Synthesis of Microspheric Silicone Polymer Beads by UV Irradiation and Alkoxy Hydrolysis

UV 조사와 Alkoxy 가수분해 법을 이용한 구형 실리콘 마이크로 고분자 비드의 합성

  • Park, Seung-Wook (School of Chemical and Biological Engineering, College of Engineering, Chungnam National University) ;
  • Kim, Jung-Joo (School of Chemical and Biological Engineering, College of Engineering, Chungnam National University) ;
  • Hwang, Eui-Hwan (Department of Chemical Engineering, College of Engineering, KongJu National University) ;
  • Hwang, Taek-Sung (School of Chemical and Biological Engineering, College of Engineering, Chungnam National University)
  • 박승욱 (충남대학교 바이오응용화학부) ;
  • 김정주 (충남대학교 바이오응용화학부) ;
  • 황의환 (공주대학교 화공과) ;
  • 황택성 (충남대학교 바이오응용화학부)
  • Published : 2008.07.31

Abstract

In this study, the microsphere silicone polymer beads were synthesized by UV irradiation and alkoxy hydrolysis. The coefficient of variation (CV) of microsphere silicone polymer beads were decreased with increasing UV intensity, reaction time. The mean particle diameter, refractive index, and pH value were $4.1{\mu}m$, 1.43 and 7.5, respectively. Also, the true and bulk specific gravity, moisture content were 1.30, and 0.40, below 2%. The mean particle diameter and CV were the lowest at 0.1 wt% hexamethyldisilazane (HMDS) and their roundnesses were $0.95{\sim}0.98{\mu}m$ values. The particle dispersion index of microsphere silicone polymer beads was 4.92 at 450 W, 90 min and the yield was increased to 11.3% at 20 wt% methyltrimethoxysilane (MTMS). The mean particle diameter was decreased with increasing the stirring rate and reaction temperature.

본 연구에서는 UV 조사와 alkoxy 가수분해 법을 이용하여 구형 마이크로 실리콘 고분자 비드를 합성하였다. 구형 실리콘 고분자 비드의 입자들의 coefficient of variation(CV)은 UV 조사량의 세기와 조사시간, 반응온도가 증가함에 따라 감소하였다. 합성된 비드의 평균 입경, 굴절률, pH는 각각 $4.1{\mu}m$, 1.43, 7.5이었으며 진비중, 겉보기 비중은 1.30, 0.40이었으며, 수분함량은 2%이하였다. Hexamethyldisilazane(HMDS) 농도가 0.1 wt%일 때 입자크기와 CV는 가장 작았고, 진원도는 $0.95{\sim}0.98{\mu}m$이었다. UV 조사량과 조사시간이 450 W, 90 min일 때 CV는 4.92%이었다. Methyltrimethoxysilane(MTMS)의 농도가 20 wt%일 때 수율은 총 충전량 대비 11.3%까지 증가하였으며 입자의 평균직경은 교반속도와 온도가 증가함에 따라 작아졌다.

Keywords

References

  1. E. Wataru, Silicone and Application, Toshiba Silicone Corp., Tokyo, 1988
  2. S. M. Gu, Korean Chem. Soc., 36, 11 (1996)
  3. Larry L. Hench, and Jon. K. West, Chemical Processing of Advanced Materials, John Wiley & Sons, Inc., New York, 1992
  4. M. N. Rahaman, Ceramic Processing and Sintering, Marcel Dekker Inc., New York, 1995
  5. P. D. Lickiss, Encyclopedia of Inorg. Chem., 7, 3770 (1999)
  6. P. D. Lickiss, Adv. Inorg. Chem., 42, 147 (1995) https://doi.org/10.1016/S0898-8838(08)60053-7
  7. R. Murugaval, V. Chandrasekhar, and H. W. Roesky, Acc. Chem. Res., 29, 183 (1996) https://doi.org/10.1021/ar950154x
  8. H. Kimura, U. S. Patent 4,528,390 (1985)
  9. Y. Harada and A. Takagi, Japan Patent 192,452 (2001)
  10. M. Taichi, T. Yasushi, W. Noriyuki, O. Hiroaki, K. Kazuo, Y. Hideo, and W. Hajimu, J. Mater. Chem., 13, 1764 (2003) https://doi.org/10.1039/b301465g
  11. S. H. Jung and J. S. Jang, Korea Patent 0,692,612 (2006)
  12. J. G Park, and P. M. Jin, Korea Patent 0,546,817 (2006)
  13. D. Herault, C. Saluzzo, and M. Lemaire, Reactive & Fuctional Polymers, 66, 567 (2006) https://doi.org/10.1016/j.reactfunctpolym.2005.10.010
  14. E. G. Sharing and W. A. Zisman J. Phys. Chem., 64, 519 (1960) https://doi.org/10.1021/j100834a002
  15. M. H. Lee, S. G. Oh, S. K. Moon, and S. Y. bae, J. Colliod Interface Sci., 240, 83 (2001) https://doi.org/10.1006/jcis.2001.7699
  16. S. D. Lee, M. S. Dissertation, Preparation of Hydrophobic Silicone Fine Powder from Methyltrimethoxysilane, Han Yang University, Seoul, Korea, 1997
  17. C. G. Tan, B. D. Bowen, and N. Epstein, J. Colloid Interface Sci., 118, 290 (1987) https://doi.org/10.1016/0021-9797(87)90458-9