Synthesis of High Affinity Anion Exchanger Using Ultrafine Fibrous PPmb Nonwoven Fabric by Co60 Irradiation Method

방사선 조사에 의한 초극세 폴리프로필렌 섬유부직포를 이용한 고효율 음이온교환체의 합성

  • Choi, Kuk-Jong (Department of Chemical Engineering, College of Engineering, Chungnam National University) ;
  • Lee, Choul-Ho (Department of Chemical Engineering, Kongju National University) ;
  • Hwang, Taek-Sung (Department of Chemical Engineering, College of Engineering, Chungnam National University)
  • Published : 2008.11.30

Abstract

The aminated polypropylene melt blown ion exchange fibers were synthesized with acrylic acid monomer onto polypropylene melt blown fibers by radiation-induced polymerization and subsequent amination. Degree of grafting was increased with increasing the acrylic acid monomer concentration and total dose. The highest degree of grafting was obtained 140% at a monomer concentration of 20 v/v% acrylic acid and total dose of 4 kGy. Optimum condition of Mohr's salt was 5.0 $\times10^{-3}$ M. Degree of amination was increased with increasing degree of grafting. Water content was about 1.5 times higher than that of trunk polymer. The maximum ion-exchange capacity was 7.3 meq/g which was 2$\sim$3 times higher than a commercial ion exchange fiber. The average pore size was decreased and BET surface area was increased in order of PPmb, PPmb- g- AAc and APPmb- g- AAc. The average pore size and BET surface area of synthesised fibers were $366.1\;{\AA},\;3.71m^2/g,\;143.3\;{\AA},\;4.94m^2/g,\;40.97\;{\AA},\;8.98m^2/g$, respectively.

Acrylic acid 단량체를 방사선 동시조사법으로 폴리프로필렌 멜트 블로운 섬유에 그래프트 반응시켜 PPmb-g-AAc 공중합체를 제조한 후 아민화 반응을 통하여 아민형 이온교환섬유를 합성하였다. 공중합체의 그래프트율은 acrylic acid 단량체의 농도와 총조사선량이 증가할수록 증가하였으며 acrylic acid 단량체의 농도와 총조사선량이 20 v/v%, 4 kGy일 때 140%로 최대치를 나타내었다. Mohr's salt의 최적농도는 $5.0\times10^{-3}$ M로 나타났다. 아민화율은 그래프트율이 증가할수록 증가하여 140%일 때 78.8%로 나타났다. 아민화한 PPmb-g-AAc 공중합체의 함수율은 기재보다 1.5배 정도 높게 나타났으며 이온교환용량은 7.3 meq/g으로 상용 이온교환섬유보다 2$\sim$3배 정도 높게 나타내었다. 합성한 APPmb-g-AAc의 BET 측정결과 PPmb, PPmb-g-AAc 및 APPmb-g-AAc 섬유의 경우 공극의 크기와 비표면적이 각각 $366.1\;{\AA},\;3.71m^2/g$$143.3\;{\AA},\;4.94m^2/g$$40.97\;{\AA},\;8.98m^2/g$로 공극의 크기는 감소하고 비 표면적이 증가하는 경향을 보였다.

Keywords

References

  1. V. A. Wente, E. L. Boone, and C. D. Fluharty, Manufacture of Superfine Organic Fibers, Naval Research Laboratory, Report No. 4364 (1954)
  2. V. A. Wente, Ind. Eng. Chem., 48, 1342 (1956) https://doi.org/10.1021/ie50560a034
  3. L. C. Wadsworth and A. M. Jones, Nonwovens Ind., 17, 44 (1986)
  4. Butin, R. Robert, J. P. Keller, and J. W. Harding, U.S. Patent 3,849,241 (1974)
  5. L. C. Wadsworth and A. M. Jones, Fibers Ind., 17, 44 (1986)
  6. L. C. Wadsworth, Y. C. Lee, and S. D. Barbuza, J. Fibers Res., 2, 43 (1990)
  7. M. Dever, L. C. Wadsworth, and Y. C. Lee, Proc. INDA Tech. Symp., 18, 1 (1990)
  8. B. M. Novak, Adv. Mater., 5, 422 (1993) https://doi.org/10.1002/adma.19930050603
  9. Y. K. Kim, D. H. Riu, S. R. Kim, and B. I. Kim, Mater. Lett., 54, 229 (2002) https://doi.org/10.1016/S0167-577X(01)00568-7
  10. Anderson, A. Richard, Sokolowski, and C. Robert, U. S. Patent 4,100,324 (1978)
  11. Kokai, Japan Patent 55-142757 (1979)
  12. N. Hein, D. V. Phu, N. N. Duy, and H. T. Huy, Nucl. Instrum. Methods B, 236, 606 (2005) https://doi.org/10.1016/j.nimb.2005.04.051
  13. B. C. Pan, Y. Xiong, Q. Su, A. M. Li, J. L. Chen, and Q. X. Zhang, Chemosphere, 51, 953 (2003) https://doi.org/10.1016/S0045-6535(03)00038-9
  14. F. Santoso, W. Albercht, M. Schroeter, Th. Weigel, D. Paul, and R. Schomacker, J. Membrane Sci., 223, 171 (2003) https://doi.org/10.1016/S0376-7388(03)00321-1
  15. T. Kawai, K. Saito, K. Sugita, T. Kawakami, J. Kanno, A. Katakai, N. Seko, and T. Sugo, Radiat. Phys. Chem., 59, 405 (2000) https://doi.org/10.1016/S0969-806X(00)00298-X
  16. D. H. Lee, S. I. Kim, M. G. Lee, K. R. Kim, S. H. Lee, and H. S. Chung, Appl. Chem. Kor., 2, 881 (1998)
  17. H. Borcherding, H. G. Hicke, D. Jorcke, and M. Ulbricht, Desalination, 149, 297 (2002) https://doi.org/10.1016/S0011-9164(02)00804-4
  18. E. Trommsdorff, H. Kohle, and P. Lagally, Makromol. Chem., 1, 169 (1948) https://doi.org/10.1002/macp.1948.020010301
  19. T. S. Hwang, J. H. Lee, and M. J. Lee, Polymer(Korea), 25, 451 (2001)
  20. H. J. Pack and C. K. Na, J. Colloid Interf. Sci., 301, 46 (2006) https://doi.org/10.1016/j.jcis.2006.05.003