One Step Preparation of Spherical Silicon Resins from Immiscible Reaction Mixtures

  • Lee, Da-Yun (Department of Nano-polymeric Materials, PaiChai University) ;
  • Kim, Young-A (Department of Nano-polymeric Materials, PaiChai University) ;
  • Kim, Young-Baek (Department of Nano-polymeric Materials, PaiChai University) ;
  • Kim, Jun-Kyu (Kolon Industry, Chemical Organization) ;
  • Han, Yang-Kyoo (Department of Chemistry, Hanyang University)
  • Published : 2008.06.30

Abstract

Spheres of silicon resins with different compositions were prepared in one-step reaction from mixtures of water and water-insoluble precursors of polysiloxanes (PSO) and polysilsesquioxanes (PSQ) using different amines as catalysts. The presence of PSO and PSQ in the spheres was confirmed by their mechanical properties and FTIR spectroscopy. Spheres of pure PSO were obtained from only dimethoxymethylvinylsiloxane (DMMVS) and 3-mercaptopropylmethyldimethoxysilan (MPMDMS) when the reaction was induced with appropriate catalysts. DMMVS and MPMDMS always gave the most promising results regarding the formation of discrete solid spheres with the minimum tendency to form monolithic solids or fluid-like, premature products. The spheres were characterized by optical microscopy, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The mixtures containing larger amounts of PSO precursors commonly gave lower yields and softer spheres.

Keywords

References

  1. R. H. Baney, M. Itoh, A. Sakakibara, and T. Suzuki, Chem. Rev., 95, 1409 (1995) https://doi.org/10.1021/cr00037a012
  2. H. S. Nalwa, Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites, H. S. Nalwa, Ed., Americal Scientific Publishers, Stevenson Ranch, 2003, Vol. I & Vol. II
  3. C. Zhang and R. M. Liane, J. Organomet. Chem., 521, 199 (1996) https://doi.org/10.1016/0022-328X(96)06364-4
  4. A. Arkhireeva and J. N. Hay, J. Mater. Chem., 13, 3122 (2003) https://doi.org/10.1039/b306994j
  5. J. Y. Choi, C. H. Kim, and D. K. Kim, J. Am. Ceram. Soc., 81, 1184 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02466.x
  6. M. I. Goller, T. M. Obey, D. O. H. Teare, and B. Vincent, Colloid Surfaces A, 123-124, 183 (1997) https://doi.org/10.1016/S0927-7757(96)03777-6
  7. S. M. Liu, X. M. Lang, H. Ye, S. J. Zhang, and J. Q. Zhao, Eur. Polym. J., 41, 996 (2005) https://doi.org/10.1016/j.eurpolymj.2004.11.027
  8. T. M. Obey and B. Vincent, J. Colloid Interface Sci., 163, 454 (1994) https://doi.org/10.1006/jcis.1994.1124
  9. P. Attard and G. Gillies, Aust. J. Chem., 54, 477 (2001) https://doi.org/10.1071/CH01117
  10. Y. B. Kim, Y.-A. Kim, and K.-S. Yoon, Macromol. Rapid Comm., 27, 1247 (2006) https://doi.org/10.1002/marc.200600245
  11. R. M. Ottenbrite, J. S. Wall, and J. A. Siddiqui, J. Am. Ceram. Soc., 83, 3214 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01709.x
  12. O. Dufaud, E. Favre, and V. Sadtler, J. Appl. Polym. Sci., 83, 967 (2002) https://doi.org/10.1002/app.2276
  13. C. J. Embery, S. R. Clarke, and J. G. Matisons, in Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites, H. S. Nalwa, Ed., Americal Scientific Publishers, Stevenson Ranch, 2003, Vol. I
  14. A. Fina, et al., Thermochimica Acta, 440, 36 (2006) https://doi.org/10.1016/j.tca.2005.10.006