Effect of Isocyanate Index on the Properties of Rigid Polyurethane Foams Blown by HFC 365mfc

  • Kim, Sung-Hee (Department of Polymer Science and Engineering, Pusan National University) ;
  • Kim, Byung-Kyu (Department of Polymer Science and Engineering, Pusan National University) ;
  • Lim, Ho (Korea Polyol Co.)
  • Published : 2008.07.31

Abstract

Rigid polyurethane foams (RPUFs) were fabricated from crude MDI (CMDI) and polypropylene glycols (PPGs) of various isocyanate indices with a physical blowing agent (HFC 365mfc). There was a tendency for the gel time to decrease and the tack-free time to increase with increasing index value. With increasing index value the foam density and compression strength decreased and the glass transition temperature, dimension stability and thermal insulation increased, while the cell size and closed cell content were virtually unchanged. Allophanate crosslinks and condensation reactions between the isocyanate groups, which are favored with a high index value, exerted significant effects on the properties of RPUFs.

Keywords

References

  1. C. Hapburn, Polyurethane Elastomers, Elsevier, Oxford, 1991, p.1
  2. G. Oertel, Polyurethane Handbook, Hanser, Publishers, 1985, p. 161
  3. M. Szycher, Szycher's Handbook of Polyurethanes, CRC Press, New York, 1999
  4. H. Singh, T. P. Sharma, and A. K. Jain, J. Appl. Polym. Sci., 106, 1014 (2007) https://doi.org/10.1002/app.26525
  5. P. Mondal and D.V. Khakhar, Macromol. Symp., 216, 241 (2004)
  6. W. J. Seo, J. H. Park, Y. T. Sung, D. H. Hwang, W. N. Kim, and H. S. Lee, J. Appl. Polym. Sci., 93, 2334 (2004) https://doi.org/10.1002/app.20717
  7. W. J. Seo, H. C. Jung, J. C. Hyun, W. N. Kim, Y. B. Lee, K. H. Choe, and S. B. Kim, J. Appl. Polym. Sci., 90, 12 (2003) https://doi.org/10.1002/app.12238
  8. J. B. Chai, B. K. Kim, and Y. J. Shin, J. Korean Ind. Eng. Chem., 9, 648 (1998)
  9. O. J. Kwon, S. R. Yang, D. H. Kim, and J. S. Park, J. Appl. Polym. Sci., 103, 1544 (2007) https://doi.org/10.1002/app.25363
  10. G. Harikrishnan and D. V. Khakhar, J. Appl. Polym. Sci., 105, 3439 (2007) https://doi.org/10.1002/app.26391
  11. Y. H. Kim, S. K. J. Choi, J. M. Kim, M. S. Han, and W. N. Kim Macromol. Res., 15, 676 (2007) https://doi.org/10.1007/BF03218949
  12. B. Antolini, F. Bianchi, M. Bottazzi, M. Careri, and M. Musci, Chromatographia, 60, 323 (2004)
  13. A. M. Heintz, D. J. Duffy, S. L. Hsu, W. Suen, W. Chu, and C. W. Paul, Macromolecules, 36, 2695 (2003) https://doi.org/10.1021/ma021559h
  14. T. Widya and C. W. Macosko, J. Macromol. Sci. Part B-Phys., 44, 897 (2005) https://doi.org/10.1080/00222340500364809
  15. S. H. Kim, H. Lim, and J. C. Song, J. Macromol. Sci., Pure Appl. Chem., 45, 1 (2008)
  16. S. H. Goods, C. L. Neuschwanger, L. L. Whinnery, and W. D. Nix, J. Appl. Polym. Sci., 74, 2724 (1999) https://doi.org/10.1002/(SICI)1097-4628(19991209)74:11<2724::AID-APP20>3.0.CO;2-1
  17. X. Cao, L. J. Lee, T. Widya, and C. Macosko, Polymer, 46, 775 (2005) https://doi.org/10.1016/j.polymer.2004.11.028
  18. Z. Xu, X. Tang, A. Gu, and Z. Fang, J. Appl. Polym. Sci., 106, 439 (2007) https://doi.org/10.1002/app.26497
  19. M. Modesti, A. Lorenzetti, and S. Besco, Polym. Eng. Sci., 47, 1351 (2007) https://doi.org/10.1002/pen.20819
  20. Z. G. Yang, B. Zhao, S. L. Qin, Z. F. Hu, Z. K. Jin, and J. H. Wang, J. Appl. Polym. Sci., 92, 1493 (2004) https://doi.org/10.1002/app.20071
  21. D. Niyogi, R. Kumar, and K. S. Gandhi, Polym. Eng. Sci., 39, 199 (1999) https://doi.org/10.1002/pen.11408
  22. N. Gent, Engineering with Rubber: How to Design Rubber Components, 2nd edition, Hanser Gardner Publications, 2001
  23. U. W. Gedde, Polymer Physics, Chapman and Hall, London, UK, 1995
  24. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York, 2006
  25. J. W. Wu, W. F. Sung, and H. S. Chu, Int. J. Heat. Mass. Transf., 42, 2211 (1999) https://doi.org/10.1016/S0017-9310(98)00315-9