Temperature Controllable HPLC Column for Preparative Fractionation of Polymers

  • Im, Kyu-Hyun (Department of Chemistry and Polymer Research Institute, Pohang University of Science and Technology) ;
  • Park, Hae-Woong (Department of Chemistry and Polymer Research Institute, Pohang University of Science and Technology) ;
  • Kim, Young-Tak (Department of Chemistry and Polymer Research Institute, Pohang University of Science and Technology) ;
  • Chang, Tai-Hyun (Department of Chemistry and Polymer Research Institute, Pohang University of Science and Technology)
  • Published : 2008.08.31

Abstract

An HPLC column with a self-contained temperature control device was constructed for preparative temperature programmed interaction chromatography. Two Peltier plates were attached to a large bore column ($120{\times}22\;mm$ i.d.) and the column temperature was controlled by PID mode feed back control. At a flow rate of 1.5 mL/min, the column temperature could be increased and decreased at a rate as high as $50^{\circ}C/min$ and $10^{\circ}C/min$, respectively, which is much faster than using a column jacket and bath/circulator. The rapid heating and cooling rates allows a high repetition rate of chromatographic fractionation. The performance of the temperature controllable column was demonstrated successfully by the fractionation of homo-polymer precursors from diblock copolymers.

Keywords

References

  1. J. F. Rabek, Experimental Methods in Polymer Chemistry, Wiley, New York, 1980
  2. S. Mori and H. G. Barth, Size Exclusion Chromatography, Springer Verlag, New York, 1999
  3. H. Cho, S. Park, M. Ree, T. Chang, J. C. Jung, and W. C. Zin, Macromol. Res., 14, 383 (2006) https://doi.org/10.1007/BF03219098
  4. G. Glockner, Gradient HPLC of Copolymers and Chromato-Graphic Cross-fractionation, Springer Verlag, Berlin, 1992
  5. H. Pasch and B. Trathnigg, HPLC of Polymers, Springer-Verlag, Berlin, 1997
  6. T. Chang, Adv. Polym. Sci., 163, 1 (2003)
  7. T. Chang, J. Polym. Sci. Part B: Polym. Phys., 43, 1591 (2005) https://doi.org/10.1002/polb.20440
  8. P. Schoenmakers, F. Fitzpatrick, and R. Grothey, J. Chromatogr. A, 965, 93 (2002) https://doi.org/10.1016/S0021-9673(01)01322-X
  9. T. Chang, H. C. Lee, W. Lee, S. Park, and C. Ko, Macromol. Chem. Phys., 200, 2188 (1999) https://doi.org/10.1002/(SICI)1521-3935(19991001)200:10<2188::AID-MACP2188>3.0.CO;2-F
  10. H. C. Lee, W. Lee, and T. Chang, Korea Polym. J., 4, 160 (1996)
  11. J. Ryu and T. Chang, Anal. Chem., 77, 6347 (2005) https://doi.org/10.1021/ac0507486
  12. B. A. Jones, J. Liq. Chromatogr. Rel. Technol., 27, 1331 (2004) https://doi.org/10.1081/JLC-120030605
  13. H. C. Lee and T. Chang, Polymer, 37, 5747 (1996) https://doi.org/10.1016/S0032-3861(96)00510-1
  14. W. Lee, H. Lee, J. Cha, T. Chang, K. J. Hanley, and T. P. Lodge, Macromolecules, 33, 5111 (2000) https://doi.org/10.1021/ma000011c
  15. H. C. Lee, T. Chang, S. Harville, and J. W. Mays, Macromolecules, 31, 690 (1998) https://doi.org/10.1021/ma9710996
  16. D. Cho, S. Park, T. Chang, K. Ute, I. Fukuda, and T. Kitayama, Anal. Chem., 74, 1928 (2002) https://doi.org/10.1021/ac010995j
  17. I. Park, S. Park, D. Cho, T. Chang, E. Kim, K. Lee, and Y. J. Kim, Macromolecules, 36, 8539 (2003) https://doi.org/10.1021/ma035033o
  18. S. Park, D. Cho, K. Im, T. Chang, D. Uhrig, and J. W. Mays, Macromolecules, 36, 5834 (2003) https://doi.org/10.1021/ma034603h
  19. K. Im, S. Park, D. Cho, T. Chang, K. Lee, and N. Choi, Anal. Chem., 76, 2638 (2004) https://doi.org/10.1021/ac035506p
  20. S. Park, I. Park, T. Chang, and C. Y. Ryu, J. Am. Chem. Soc., 126, 8906 (2004) https://doi.org/10.1021/ja047385w
  21. S. Park and T. Chang, Macromolecules, 39, 3466 (2006) https://doi.org/10.1021/ma060326d
  22. S. Park, C. Ko, H. Choi, K. Kwon, and T. Chang, J. Chromatogr. A, 1123, 22 (2006) https://doi.org/10.1016/j.chroma.2006.04.095
  23. K. Im, H. W. Park, Y. Kim, B. H. Chung, M. Ree, and T. H. Chang, Anal. Chem., 79, 1067 (2007) https://doi.org/10.1021/ac061738n
  24. P. G. Santangelo, C. M. Roland, T. Chang, D. Cho, and J. Roovers, Macromolecules, 34, 9002 (2001) https://doi.org/10.1021/ma011069+
  25. S. Park, K. Kwon, D. Cho, B. Lee, M. Ree, and T. Chang, Macromolecules, 36, 4662 (2003) https://doi.org/10.1021/ma030086r
  26. T. Welsch, M. Schmid, J. Kutter, and A. Kalman, J. Chromatogr. A, 728, 299 (1996) https://doi.org/10.1016/0021-9673(95)00876-4
  27. K. Kwon, W. Lee, D. Cho, and T. Chang, Korea Polym. J., 7, 321 (1999)
  28. W. Lee, D. Cho, T. Chang, K. J. Hanley, and T. P. Lodge, Macromolecules, 34, 2353 (2001) https://doi.org/10.1021/ma001727a
  29. H. L. Hsieh and R. P. Quirk, Anionic Polymerization ; Principles and Practical Applications, Marcel Dekker, New York, 1996
  30. N. Hadjichristidis, H. Iatrou, M. Pitsikalis, and J. Mays, Prog. Polym. Sci., 31, 1068 (2006) https://doi.org/10.1016/j.progpolymsci.2006.07.002
  31. A. Hirao, Y. Tsunoda, A. Matsuo, K. Sugiyarna, and T. Watanabe, Macromol. Res., 14, 272 (2006) https://doi.org/10.1007/BF03219083
  32. B. Chung, S. Park, and T. Chang, Macromolecules, 38, 6122 (2005) https://doi.org/10.1021/ma050751r
  33. S. Park, D. Cho, J. Ryu, K. Kwon, W. Lee, and T. Chang, Macromolecules, 35, 5974 (2002) https://doi.org/10.1021/ma0205313
  34. I. Park, S. Park, H.-W. Park, T. Chang, H. Yang, and C. Y. Ryu, Macromolecules, 39, 315 (2006) https://doi.org/10.1021/ma0515937
  35. S. W. Hwang, E. Kim, C. Shin, J. H. Kim, D. Y. Ryu, S. Park, T. Chang, and J. K. Kim, Macromolecules, 40, 8066 (2007) https://doi.org/10.1021/ma071314a
  36. S. H. Nguyen, D. Berek, and O. Chiantore, Polymer, 39, 5127 (1998) https://doi.org/10.1016/S0032-3861(97)10192-6
  37. M. Lazzari, M. Janco, T. Kitayama, and K. Hatada, Macromol. Rapid Commun., 24, 1019 (2003) https://doi.org/10.1002/marc.200300074