RGD-Conjugated Chitosan-Pluronic Hydrogels as a Cell Supported Scaffold for Articular Cartilage Regeneration

  • Park, Kyung-Min (Department of Molecular Science and Technology, Ajou University) ;
  • Joung, Yoon-Ki (Department of Molecular Science and Technology, Ajou University) ;
  • Park, Ki-Dong (Department of Molecular Science and Technology, Ajou University) ;
  • Lee, Sang-Young (Department of Orthopedic Surgery, Seoul National University, College of Medicine) ;
  • Lee, Myung-Chul (Department of Orthopedic Surgery, Seoul National University, College of Medicine)
  • Published : 2008.08.31

Abstract

A RGD (Arg-Gly-Asp) conjugated chitosan hydrogel was used as a cell-supporting scaffold for articular cartilage regeneration. Thermosensitive chitosan-Pluronic (CP) has potential biomedical applications on account of its biocompatibility and injectability. A RGD-conjugated CP (RGD-CP) copolymer was prepared by coupling the carboxyl group in the peptide with the residual amine group in the CP copolymer. The chemical structure of RGD-CP was characterized by $^1H$ NMR and FT IR. The concentration of conjugated RGD was quantified by amino acid analysis (AAA) and rheology of the RGD-CP hydrogel was investigated. The amount of bound RGD was $0.135{\mu}g$ per 1 mg of CP copolymer. The viscoelastic parameters of RGD-CP hydrogel showed thermo-sensitivity and suitable mechanical strength at body temperature for cell scaffolds (a> 100 kPa storage modulus). The viability of the bovine chondrocyte and the amount of synthesized glycosaminoglycans (GAGs) on the RGD-CP hydrogels were evaluated together with the alginate hydrogels as a control over a 14 day period. Both results showed that the RGD-CP hydrogel was superior to the alginate hydrogel. These results show that conjugating RGD to CP hydro gels improves cell viability and proliferation, including extra cellular matrix (ECM) expression. Therefore, RGD conjugated CP hydrogels are quite suitable for a chondrocyte culture and have potential applications to the tissue engineering of articular cartilage tissue.

Keywords

References

  1. H. S. Park, J. S. Temenoff, T. A. Holland, Y. Tabata, and A. G. Mikos, Biomaterials, 26, 7095 (2005) https://doi.org/10.1016/j.biomaterials.2005.05.083
  2. M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson, New. Engl. J. Med., 331, 889 (1994) https://doi.org/10.1056/NEJM199410063311401
  3. E. Bel, B. Ivarsson, and C. Merrill, Proc. Natl. Acad. Sci. USA, 76, 1274 (1979)
  4. J. F. Hansbrough, D. Christine, and W. B. Hansbrough, J. Burn. Care. Rehabil., 13, 519 (1992) https://doi.org/10.1097/00004630-199209000-00004
  5. G. Khang, J. M. Rhee, P. Shin, I. Y. Kim, B. Lee, S. J. Lee, Y. M. Lee, H. B. Lee, and I. Lee, Macromol. Res., 10, 158 (2002) https://doi.org/10.1007/BF03218266
  6. J. S. Park, J. M. Kim, S. J. Lee, S. G. Lee, Y. K. Jeong, S. E. Kim, and S. C. Lee, Macromol. Res., 15, 424 (2007) https://doi.org/10.1007/BF03218809
  7. H. S. Kim, J. T. Kim, Y. J. Jung, S. C. Ryu, H. J. Son, and Y. G. Kim, Macromol. Res., 15, 65 (2007) https://doi.org/10.1007/BF03218754
  8. S. H. Lim, Y. Son, C. H. Kim, H. Shin, and J. I. Kim, Macromol. Res., 15, 370 (2007) https://doi.org/10.1007/BF03218801
  9. B. L. Seal, T. C. Otero, and A. Panitch, Mater. Sci. Eng., R34, 147 (2001)
  10. Q. Hu, B. Li, M. Wang, and J. Shen, Biomaterials, 25, 779 (2004) https://doi.org/10.1016/S0142-9612(03)00582-9
  11. M. V. Risbud and R. R. Bhonde, Drug. Deliv., 7, 69 (2000) https://doi.org/10.1080/107175400266623
  12. K. S. Chow and E. Khor, Biomacromolecules, 1, 61 (2000) https://doi.org/10.1021/bm005503b
  13. D. M. Albert, S. Michael, and V. R. Makarand, Biomaterials, 26, 5983 (2005) https://doi.org/10.1016/j.biomaterials.2005.03.016
  14. M. Tatsuya, I. Norimasa, Y. Shintaro, F. Tadanao, M. Tokifumi, M. Akio, O. Noriko, O. Takashi, and N. Shin-Ichiro, Biomaterials, 26, 5339 (2005) https://doi.org/10.1016/j.biomaterials.2005.01.062
  15. M. D. Pierschbacher and E. Ruoslahti, Nature, 309, 30 (1984) https://doi.org/10.1038/309030a0
  16. E. Ruoslahti and M. D. Pierschbacher, Science, 238, 491 (1987) https://doi.org/10.1126/science.2821619
  17. S. P. Massia and J. A. Hubbell, Anal. Biochem., 187, 292 (1990) https://doi.org/10.1016/0003-2697(90)90459-M
  18. H. B. Lin, W. Sun, D. F. Mosher, C. Garcia-Echeverria, K. Schaufelberger, P. I. Lelkes, and S. L. Cooper, J. Biomed. Mater. Res., 28, 329 (1994) https://doi.org/10.1002/jbm.820280307
  19. J. Graf, Y. Iwamoto, M. Sasaki, G. R. Martin, R. K. Kleinman, F. A. Robey, and Y. Yamada, Cell, 48, 989 (1987) https://doi.org/10.1016/0092-8674(87)90707-0
  20. S. Jo, P. S. Engel, and A. G. Mikos, Polymer, 41, 7595 (2000) https://doi.org/10.1016/S0032-3861(00)00117-8
  21. K. J. Jung, K. D. Ahn, D. K. Han, and D. J. Ahn, Macromol. Res., 13, 446 (2005) https://doi.org/10.1007/BF03218479
  22. H. Ming-Hua, W. Da-Ming, H. Hsyue-Jen, L. Hwa-Chang, H. Tzu-Yang, L. Juin-Yoh, and H. Lein-Tuan, Biomaterials, 26, 3197 (2005) https://doi.org/10.1016/j.biomaterials.2004.08.032
  23. B. A. Jason and A. S. Kristi, Biomaterials, 23, 4315 (2002) https://doi.org/10.1016/S0142-9612(02)00176-X
  24. H. J. Chung, D. H. Go, J. W. Bae, I. K. Jung, J. W. Lee, and K. D. Park, Curr. Appl. Phys., 5, 485 (2005) https://doi.org/10.1016/j.cap.2005.01.015
  25. H. Ulrich, D. Claudia, and K. Horst, Biomaterials, 24, 4385 (2003) https://doi.org/10.1016/S0142-9612(03)00343-0
  26. A. Martinez-Ruvalcaba, E. Chornet, and D. Rodrigue, Carbohyd. Polym., 67, 586 (2007) https://doi.org/10.1016/j.carbpol.2006.06.033
  27. D. R. Nisbet, K. E. Crompton, S. D. Hamilton, S. Shirakawa, R. J. Prankerd, D. I. Finkelstein, M. K. Horne, and J. S. Forsythe, Biophys. Chem., 121, 14 (2006) https://doi.org/10.1016/j.bpc.2005.12.005
  28. C. Qing, W. Yuqing, B. Jianzhong, and W. Shenguo, Biomaterials, 24, 3555 (2003) https://doi.org/10.1016/S0142-9612(03)00199-6
  29. D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to Spectroscopy, Second edition, Saunders College Publishing, 1979, pp. 81-84
  30. R. Jin, C. Hiemstra, Z. Zhong, and J. Feijen, Biomaterials, 28, 2791 (2007) https://doi.org/10.1016/j.biomaterials.2007.02.032
  31. X. Jia, J. A. Burdick, J. Kobler, R. J. Clifton, J. J. Rosowski, S. M. Zeitels, and R. Langer, Macromolecules, 37, 3239 (2004) https://doi.org/10.1021/ma035970w