Cellular-uptake Behavior of Polymer Nanoparticles into Consideration of Biosafety

  • Do, Jeong-Hoe (Department of Polymer Science and Engineering, Sungkyunkwan University) ;
  • An, Jeong-Ho (Department of Polymer Science and Engineering, Sungkyunkwan University) ;
  • Joun, Yong-Seung (Department of Polymer Science and Engineering, Sungkyunkwan University, Research Center, Cosmax Co. Ltd.) ;
  • Chung, Dong-June (Department of Polymer Science and Engineering, Sungkyunkwan University, Intellectual Biointerface Engineering Center, Seoul National University) ;
  • Kim, Ji-Heung (Department of Chemical Engineering, Sungkyunkwan University)
  • 발행 : 2008.12.31

초록

Nanoparticles have tremendous potential in cancer prevention, detection and augmenting existing treatments. They can target tumors, carry imaging capability to document the presence of tumors, sense pathophysiological defects in tumor cells, deliver therapeutic genes or drugs based on the tumor characteristics, respond to external triggers to release an appropriate agent, document the tumor response, and identify the residual tumor cells. Nanoparticles < 30 nanometers in diameter show unexpected and unique properties. Furthermore, particles < 5 nanometers in size can easily penetrate cells as well as living tissues and organs. This study evaluated the safety of nano materials in a living body and the relationship between the living tissue and synthetic nano materials by examining the in-vitro cytotoxicity of poly(lactic-co-glycolic) acid (PLGA) nano-spheres and fluorescein isothiocynate(FITC)-labeled dendrimers as polymer nanoparticles. PLGA was chosen because it has been used extensively for biodegradable nanoparticles on account of its outstanding bio-compatibility and its acceptance as an FDA approved material. The dendrimer was chosen because it can carry a molecule that recognizes cancer cells, a therapeutic agent that can kill those cells, and a molecule that recognizes the signals of cell death. Cytotoxicity in L929 mouse fibroblasts was monitored using MTT assay. Microscopic observations were also carried out to observe cell growth. All assays yielded meaningful results and the PLGA nanoparticles showed less cytotoxicity than the dendrimer. These nano-particles ranged in size from 10 to 100 nm according to microscopy and spectroscopic methods.

키워드

참고문헌

  1. R. S. Gesco, F. B. Prinz, and R. L. Smith, Nanoscale technology in biological system, CRC PRESS, Florida, 2005
  2. T. C. Yeh, W. Zhang, S. T. Ildstad, and C. Ho, Magn. Reson. Med., 30, 617 (1993) https://doi.org/10.1002/mrm.1910300513
  3. U. Schoepf, E. Marecos, R. Melder, R. Jain, and R. Weissleder, Biotechniques, 24, 642 (1998)
  4. A. Moore, J. P. Basilion, E. A. Chiocca, and R. Weissleder, Biochim. Biophys. Acta, 1402, 239 (1998) https://doi.org/10.1016/S0167-4889(98)00002-0
  5. R. Weissleder, H. C. Cheng, and A. Bogdanov, J. Magn. Reson. Imaging., 7, 258 (1997) https://doi.org/10.1002/jmri.1880070140
  6. G. V. Calster, Regulating nanotechnology in the European Union, Nanotechnology law and business, p. 359 (2006)
  7. G. V. Calster, Regulating nanotechnology in the European Union, Nanotechnology law and business, p. 359 (2006)
  8. V. L. Colvin, Nature Biotech., 21, 1166 (2003) https://doi.org/10.1038/nbt875
  9. K. W. Powers, S. C. Brown, V. B. Krishna, S. C. Wasdo, B. M. Moudgil, and S. M. Roberts, Toxicol. Sci., 90, 296 (2006) https://doi.org/10.1093/toxsci/kfj099
  10. L. Mu and S. S. Feng, J. Control. Rel., 86, 33 (2003) https://doi.org/10.1016/S0168-3659(02)00320-6
  11. B. K. Kang, S. K. Chon, S. H. Kim, S. Y. Jeong, M. S. Kim, S. H. Cho, H. B. Lee, and G. S. Khang, Int. J. Pharm., 286, 147 (2004) https://doi.org/10.1016/j.ijpharm.2004.08.008
  12. R. M. Mainardes and R. C. Evangelista, Int. J. Pharm., 290, 137 (2005) https://doi.org/10.1016/j.ijpharm.2004.11.027
  13. M. N. V. Ravi Kumar, Bakowsky, and C. M. Lehr, Biomaterials, 25, 1771 (2004) https://doi.org/10.1016/j.biomaterials.2003.08.069
  14. J. Wang, K. M. Chua, and C. H. Wang, J. Colloid Interf. Sci., 271, 92 (2004) https://doi.org/10.1016/j.jcis.2003.08.072
  15. M. J. Cloniger, Current Opinion in Chem. Biol., 6, 742 (2002) https://doi.org/10.1016/S1367-5931(02)00400-3
  16. K. C. Song, H. S. Lee, I. Y. Choung, K. I. Cho, Y. K. Ahn, and E. J. Choi, Colloid Surface A, 276, 162 (2006) https://doi.org/10.1016/j.colsurfa.2005.10.064
  17. R. Duncan and L. Izzo, Adv. Drug Deliv. Rev., 57, 2215 (2005) https://doi.org/10.1016/j.addr.2005.09.019
  18. H. Kobayashi and M. W. Brechbiel, Adv. Drug Deliv. Rev., 57, 2271 (2005) https://doi.org/10.1016/j.addr.2005.09.016
  19. S. Sevenson and D. A. Tomalia, Adv. Drug Deliv. Rev., 57, 2106 (2005) https://doi.org/10.1016/j.addr.2005.09.018
  20. D. A. Tomalia and J. M. Frechet, Prog. Polym. Sci., 30, 217 (2005) https://doi.org/10.1016/j.progpolymsci.2005.03.003
  21. N. Launay, A. M. Caminade, and J. P. Majoral, J. Organomet. Chem., 529, 51 (1997) https://doi.org/10.1016/S0022-328X(96)06293-6
  22. D. A. Tomalia, A. M. Naylor, and W. A. Goddard III, Angew. Chem. Int. Edn., 29, 138 (1990) https://doi.org/10.1002/anie.199001381
  23. R. Jevprasephant, Pharm. Rev., 20, 1543 (2003)
  24. T. J. Mosmann, Immunol. Methods, 65, 55 (1983) https://doi.org/10.1016/0022-1759(83)90303-4
  25. A. T. Florence, A. M. Hillery, N. Hussain, and P. U. Jani, J. Control. Rel., 36, 39 (1995) https://doi.org/10.1016/0168-3659(95)00059-H
  26. M. E. Lefevre, J. W. Vanderhoff, J. A. Laussue, and D. D. Joel, Experimentia, 34, 120 (1978) https://doi.org/10.1007/BF01921939
  27. E. Sanders and C. T. Ashworth, Exp. Cell Res., 22, 137 (1961) https://doi.org/10.1016/0014-4827(61)90092-1
  28. K. Y. Win and Si-S. Feng, Biomaterials, 26, 2713 (2005) https://doi.org/10.1016/j.biomaterials.2004.07.050