The Shape of Synaptic Vesicles in the Tooth Pulp Afferent Terminals and P-endings in the Rat Trigeminal Nucleus Principalis

흰쥐의 삼차신경주감각핵에서 치수유래 일차들신경종말 및 이와 연접하는 연접이전신경종말의 연접소포 형태 비교

  • Kim, Yun-Sook (Department of Oral Anatomy and Neurobiology, School of Dentistry, Brain Korea 21, Kyungpook National University) ;
  • Paik, Sang-Kyoo (Department of Oral Anatomy and Neurobiology, School of Dentistry, Brain Korea 21, Kyungpook National University) ;
  • Kwak, Woo-Kyung (Department of Oral Anatomy and Neurobiology, School of Dentistry, Brain Korea 21, Kyungpook National University) ;
  • Cho, Yi-Sul (Department of Oral Anatomy and Neurobiology, School of Dentistry, Brain Korea 21, Kyungpook National University) ;
  • Kim, Ji-Man (Department of Oral Anatomy and Neurobiology, School of Dentistry, Brain Korea 21, Kyungpook National University) ;
  • Park, Mae-Ja (Department of Anatomy, School of Medicine, Brain Korea 21, Kyungpook National University) ;
  • Bae, Yong-Chul (Department of Oral Anatomy and Neurobiology, School of Dentistry, Brain Korea 21, Kyungpook National University)
  • 김윤숙 (경북대학교 치의학전문대학원 구강해부학교실, Brain Korea 21) ;
  • 백상규 (경북대학교 치의학전문대학원 구강해부학교실, Brain Korea 21) ;
  • 곽우경 (경북대학교 치의학전문대학원 구강해부학교실, Brain Korea 21) ;
  • 조이슬 (경북대학교 치의학전문대학원 구강해부학교실, Brain Korea 21) ;
  • 김지만 (경북대학교 치의학전문대학원 구강해부학교실, Brain Korea 21) ;
  • 박매자 (경북대학교 의학전문대학원 해부학교실, Brain Korea 21) ;
  • 배용철 (경북대학교 치의학전문대학원 구강해부학교실, Brain Korea 21)
  • Published : 2008.12.31

Abstract

In order to investigate shape of synaptic vesicles of the tooth pulp afferent boutons and their presynaptic endings (p-endings), and the neuroactive substance of the p-endings in the trigeminal nucleus principalis, rat incisor tooth pulp afferents were labeled by the horseradish peroxidase (HRP) and quantitative ultrastructural analysis and postembedding immunogold labeling were performed. Labeled tooth pulp afferent boutons contained clear, spherical synaptic vesicles (diameter: $45{\sim}55\;nm$) and occasionally dense core vesicles(diameter: $80{\sim}120\;nm$). They formed symmetrical synapses with unlabeled axon terminals (p-endings) containing pleomorphic synaptic vesicles. The ratio of short to long diameter (form factor) of synaptic vesicles of pulp afferent boutons was 0.6 to 0.99, whereas that of p-endings was 0.25 to 0.99. In addition, most of the p-endings showed GABA-like immunoreactivity. These results indicate that the shape of synaptic vesicles is quite different between the tooth pulp afferent boutons and p-endings, and the p-endings may contain GABA as a neuroactive substance in the trigeminal nucleus principalis.

삼차신경주감각핵에서 치수유래 일차들신경섬유의 종말과 그에 연접하는 연접이전신경종말에 함유된 연접소포들을 형태학적으로 비교하기 위하여 신경추적자(WGA-HRP)를 흰쥐 앞니의 치수강에 주입하여 치수 유래 일차들신경종말을 표식한 후, 투과형 전자현미경을 통한 미세구조적 정량 분석을 실시하였다. 표식된 치수유래 일차들신경종말은 직경이 $45{\sim}55\;nm$인 구형의 소포를 함유하고 있었으며, 일부 직경이 $80{\sim}120\;nm$ 큰 치밀소포가 관찰되기도 하였다. 또한 표식된 신경종말은 다형성 연접소포를 함유하고 있는 연접이전신경종말과 대칭연접을 이루고 있었다. 일차들신경종말의 연접소포들은 긴 지름에 대한 짧은 지름의 비율(form factor)이 $0.6{\sim}0.99$의 분포를 보인 반면, 연접이 전신경종말의 연접소포들은 $0.25{\sim}0.99$까지 다양하게 나타났다. 또한 대부분의 연접이전신경종말은 GABA에 대한 면역양성반응을 보였다. 이상의 결과는 표식된 신경종말과 그에 연접하는 연접이전신경종말의 연접소포는 서로 다른 형태를 보이고 있으며, 또한 그 연접이전신경종말이 억제성 신경전달물질인 GABA를 함유하고 있음을 나타낸다.

Keywords

References

  1. Almond JR, Westrum LE, Henry MA: Post-embedding immunogold labeling of gamma-aminobutyric acid in lamina II of the spinal trigeminal subnucleus pars oralis. I. A quantitative study. Synapse 24 : 39-47, 1996 https://doi.org/10.1002/(SICI)1098-2396(199609)24:1<39::AID-SYN5>3.0.CO;2-H
  2. Bae YC, Nagase Y, Yoshida A, Shigenaga Y, Sugimoto T: Synaptic connections of a periodontal primary afferent neuron within the subnucleus oralis of the cat. Brain Res 606 : 175-179, 1993 https://doi.org/10.1016/0006-8993(93)91588-J
  3. Bae YC, Nakagawa S, Yoshida A, Shigenaga Y, Sugimoto T: Morphology and synaptic connections of slowly adapting periodontal afferent terminals in the trigeminal subnuclei principalis and oralis of the cat. J Comp Neurol 348 : 121-132, 1994 https://doi.org/10.1002/cne.903480107
  4. Bae YC, Nakagawa S, Yasuda K, Yabuta NH, Yoshida A, Pil PK, Moritani M, Chen K, Nagase Y, Takemura M, Shigenaga Y: Electron microscopic observation of synaptic connections of jaw-muscle spindle and periodontal afferent terminals in the trigeminal motor and supratrigeminal nuclei in the cat. J Comp Neurol 374 : 421-435, 1996 https://doi.org/10.1002/(SICI)1096-9861(19961021)374:3<421::AID-CNE7>3.0.CO;2-3
  5. Bae YC, Ihn HJ, Park MJ, Otterson OP, Moritani M, Honma S, Shigenaga Y: Distribution pattern of inhibitory and excitatory synapses in the dendritic tree of single masseter alpha-motoneurons in the cat. J Comp Neurol 414 : 454-468, 1999 https://doi.org/10.1002/(SICI)1096-9861(19991129)414:4<454::AID-CNE3>3.0.CO;2-7
  6. Bae YC, Kim JP, Choi BJ, Park KP, Choi MK, Moritani M, Yoshida A, Shigenaga Y: Synaptic organization of tooth pulp afferent terminals in the rat trigeminal sensory nuclei. J Comp Neurol 11 : 13-24, 2003
  7. Bae YC, Park KS, Bae JY, Paik SK, Ahn DK, Moritani M, Yoshida A, Shigenaga Y: GABA and glycine in synaptic microcircuits associated with physiologically characterized primary afferents of cat trigeminal principal nucleus. Exp Brain Res 162 : 449-457, 2005 https://doi.org/10.1007/s00221-004-2022-y
  8. Bodian D: Electron microscopy: two major synaptic types on spinal motoneurons. Science 151 : 1093-1094, 1966 https://doi.org/10.1126/science.151.3714.1093
  9. Broman J, Ottersen OP: Cervicothalomic tract terminals are enriched in glutamate-like immunoreactivity: an electron microscopic double-labeling study in the cat. J Neurosci 12 : 204-221, 1992 https://doi.org/10.1523/JNEUROSCI.12-01-00204.1992
  10. Doyle CA, Maxwell DJ: Light- and electron-microscopic analysis of neuropeptide Y-immunoreactive profiles in the cat spinal dorsal horn. Neuroscience 61 : 107-121, 1994 https://doi.org/10.1016/0306-4522(94)90064-7
  11. Eccles JC, Kostyuk PG, Schmidt RF: Central pathways responsible for depolarization of primary afferent fibers. J Physiol 161 : 237-257, 1962 https://doi.org/10.1113/jphysiol.1962.sp006884
  12. Graham B, Redman S: Simulation of action potential in synaptic boutons during presynaptic inhibition. J Neurophysiol 71 : 538-549, 1994 https://doi.org/10.1152/jn.1994.71.2.538
  13. Jackson MB, Zhang SJ: Action potential propagation and propagation block by GABA in rat posterior pituitary nerve terminals. J Physiol 483 : 597-611, 1995 https://doi.org/10.1113/jphysiol.1995.sp020609
  14. Maxwell DJ, Christie WM, Short AD, Brown AG: Direct observations of synapses between GABA-immunoreactive boutons and muscle afferent terminals in lamina VI of the cat's spinal cord. Brain Res 530 : 215-222, 1990 https://doi.org/10.1016/0006-8993(90)91285-O
  15. Moon YS, Paik SK, Seo JH, Yi HW, Cho YS, Moritani M, Yoshida A, Ahn DK, Kim YS, Bae YC: GABA- and glycine-like immunoreactivity in axonal endings presynaptic to the vibrissa afferents in the cat trigeminal interpolar nucleus. Neuroscience 152 : 138-145, 2008 https://doi.org/10.1016/j.neuroscience.2007.11.033
  16. Nakagawa S, Kurata S, Yoshida A, Nagase Y, Moritani M, Takemura M, Bae YC, Shigenaga Y: Ultrastructural observations of synaptic connections of vibrissa afferent terminals in cat principal sensory nucleus and morphometry of related synaptic elements. J Comp Neurol 389 : 12-33, 1997 https://doi.org/10.1002/(SICI)1096-9861(19971208)389:1<12::AID-CNE2>3.0.CO;2-H
  17. Olszewski J: On the anatomical and functional organization of the spinal trigeminal nucleus. J Comp Neurol 92 : 401-413, 1950 https://doi.org/10.1002/cne.900920305
  18. Ottersen OP: Postembedding light- and electron microscopic immunocytochemistry of amino acids: description of a new model system allowing identical conditions for specify testing and tissue processing. Exp Brain Res 69 : 167-174, 1987
  19. Paik SK, Kwak MK, Ahn DK, Kim YK, Kim DS, Moon C, Moritani M, Yoshida A, Bae YC: Ultrastructure of jaw muscle spindle afferents within the rat trigeminal mesencephalic nucleus. Neuroreport 16 : 1561-1564, 2005 https://doi.org/10.1097/01.wnr.0000180149.29762.c4
  20. Ribeiro-Da-Silva A, Cuello AC: Choline acetyltransferase-immunoreactive profiles are presynaptic to primary sensory fibers in the rat superficial dorsal horn. J Comp Neurol 295 : 370-384, 1990 https://doi.org/10.1002/cne.902950303
  21. Ribeiro-Da-Silva A, Pioro EP, Cuello AC: Substance P- and enkephalin-like immunoreactivities are colocalized in certain neurons of the substantia gelatinosa of the rat spinal cord: an ultrastructural double-labeling study. J Neurosci 11 : 1068-1080, 1991 https://doi.org/10.1523/JNEUROSCI.11-04-01068.1991
  22. Sugimoto T, Nagase Y, Nishiguchi T, Kitamura S, Shigenaga Y: Synaptic connections of a low-threshold mechanoreceptive primary neuron within the trigeminal subnucleus oralis. Brain Res 548 : 338-342, 1991 https://doi.org/10.1016/0006-8993(91)91145-Q
  23. Sugimoto T, Bae YC, Nagase Y, Shigenaga Y: Central terminal morphology of a primary afferent neuron innervating the feline tooth pulp. In: Inoki R, Shigenaga Y, Tohyama M (eds) Processing and Inhibition of Nociceptive Information. Amsterdam: Elsevier Science Publisher BV, International Congress Series 989. pp. 23-28, 1992
  24. Todd AJ: An electron microscope study of glycine-like immunoreactivity in laminae I-III of the spinal dorsal horn of the rat. Neuroscience 39 : 387-394, 1990 https://doi.org/10.1016/0306-4522(90)90275-9
  25. Uchizono K: Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature 207 : 642-643, 1965 https://doi.org/10.1038/207642a0
  26. Watson AH: Antibodies against GABA and glutamate label neurons with morphologically distinct synaptic vesicles in the locust central nervous system. Neuroscience 26 : 33-44, 1988 https://doi.org/10.1016/0306-4522(88)90125-X
  27. Yasui Y, Itoh K, Mizuno N, Nomura S, Takada M, Konishi A, Kudo M: The posteromedial ventral nucleus of the thalamus (VPM) of the cat: direct ascending projections to the cytoarchitectonic subdivisions. J Comp Neurol 220 : 219-228, 1983 https://doi.org/10.1002/cne.902200209
  28. Zhang SJ, Jackson MB: GABA-activated chloride channels in secretory nerve endings. Science 259 : 531-534, 1993 https://doi.org/10.1126/science.8380942