Turion as Dormant Structure in Spirodela polyrhiza

개구리밥 휴면구조 잠아의 구조적 특성

  • Kwak, Mi-Young (Biology Department, College of Natural Sciences, Keimyung University) ;
  • Kim, In-Sun (Biology Department, College of Natural Sciences, Keimyung University)
  • 곽미영 (계명대학교 자연과학대학 생물학과) ;
  • 김인선 (계명대학교 자연과학대학 생물학과)
  • Published : 2008.12.31

Abstract

Hydrophytes such as Spirodela polyrhiza form dormant turions to withstand cold winters. The turion is an anatomically distinct structure from which a vegetative frond arises later during germination. The turions sink to the bottom of the pond when temperatures drop and remain there throughout the winter. In the spring, they float to the surface and germinate into a new frond from the turion primordium. Unlike fronds, turions are known to possess small aerenchyma, starch grains, and relatively dense cytoplasm. These features allow the turions to survive the cold winter season at the bottom of the pond. Spirodela polyrhiza has been investigated previously to a great extent, especially in its physiological, biochemical and ecological attributes. However, a little is known about the structural features of the frond and turion during turion development. Thus, the aim of the present study was to reveal the structural characteristics of the frond and turion with regard to tissue differentiation, aerenchyma development, starch distribution, and ultrastructure, with the use of electron microscopy. A moderate degree of mesophyll tissue differentiation was found in the frond, whereas the turion did not exhibit such differentiation. Within the frond tissue, approximately $37{\sim}45%$ of the cellular volume was occupied by a large aerenchyma, but only $9{\sim}15%$ was taken up by the aerenchyma in the turion. The turion cells, especially those of the turion primordium, were derived from frond cells, and contained cytoplasm. Their cytoplasm was densely packed with plastids, mitochondria, endoplasmic reticulum, Golgi bodies, and microtubules. Plasmodesmata were also well developed within these cells. The most striking feature observed was the distribution of starch grains within the plastids of turion cells. Before the turion sank to the bottom of the pond, a considerable amount of starch accumulated in the plastid stroma. The starch grains dissolved when temperatures rose in the spring, and this promptly provided the nutrients which the primordium needed for turion germination. The turion therefore, was an appropriate dormant structure for free-floating, reduced hydrophytes like Spirodela polyhriza due to its small aerenchyma and large starch grains that aided in the purpose of sinking below the surface of the water to survive cold winters. The new fronds that arose from such turions grew rapidly in the spring, beginning the new life cycle.

일부 수생식물은 휴면구조로 엽상체가 변형된 잠아를 형성하여 적응 생존한다. 부유부엽성 식물인 개구리밥은 가을에 형성된 잠아로 동절기 물속에 가라앉아 휴면상태로 겨울을 난다. 이들 잠아는 엽상체의 특정 부위에서 기원하나 모엽상체와 달리 통기조직의 발달이 미흡하고 조직의 밀도가 높아 수중 침강에 유리한 구조로 분화된다. 잠아조직 내에는 일반적으로 기온상승 시 생장재개에 바로 이용할 수 있는 영양분이 저장되어 있다. 이러한 특성을 지닌 개구리밥 잠아의 형성 및 발아에 대해서는 생리적, 생화학적으로 다양한 연구가 진행되고 있으나 잠아조직 세포의 미세구조 연구는 미흡한 상태이다. 이 연구에서는 엽상체와 잠아 엽육조직의 분화, 통기조직의 발달, 녹말의 분포, 세포수준에서의 미세구조 발달양상을 비교 연구하였다. 엽육조직이 비교적 분화되어 있는 모엽상체는 통기조직이 잘 발달되어 엽상체 용적의 약 $37{\sim}45%$를 차지하였다. 반면, 잠아는 엽육조직의 분화 없이 조직 내 통기조직의 발달이 미흡하여 전체 용적의 약 $9{\sim}15%$를 차지하였다. 모엽상체 엽육세포와 달리 잠아 세포내 세포질은 매우 치밀하며 엽록체 기질에는 녹말이 다량 축적되어 있다. 엽록체, 세포벽, 액포, 세포막은 모엽상체 세포내 특성과 다른 양상으로 분화하였다. 이와 같이 잠아는 통기조직의 미흡한 발달, 세포질의 높은 밀도, 녹말의 다량 축적 등으로 조직의 밀도를 높게 하여 겨울철 휴면상태에 잘 적응된 구조로 발달시켜 축소된 개구리밥 식물체 생활사에 중요한 역할을 수행하는 독특한 구조로 분화하였다. 매우 빠른 생장으로 수면에 넓게 분포하는 개구리밥은 수생환경에 필요한 양분 및 빛을 차단하여 수생의 생태에 나쁜 영향을 미치기도 한다. 그러나 잠아형성 촉진 조건을 가해 주면 식물체는 쉽게 물속에 가라앉아 휴면상태를 유지할 수 있는 것으로 알려져 있다. 다른 식물 종들은 생장 및 형성 조건을 조절하기 어렵지만 개구리밥 식물체의 잠아는 이러한 구조적 특징으로 형성이 쉽게 조절될 수 있어 수생환경 개선에 유망한 후보가 되고 있다. 향후 본 연구의 모엽상체와 잠아의 생장 및 구조 특성을 이용하여 유사 수생식물 잠아의 생장특성에 적용하면 수생환경정화 등의 영역에서 유용하게 활용될 수 있는 휴면구조가 될 것이다.

Keywords

References

  1. Appenroth KJ: No photoperiodoc control of the formation of turions in eight clones of Spirodela polyrhiza. J Plant Physiol 160 : 1329-1334, 2003 https://doi.org/10.1078/0176-1617-01035
  2. Appenroth KJ, Bergfeld R: Photophysiology of turion germination in Spirodela polyrhiza (L.) Schieiden XI. structural changes during red light induced responses. J Plant Physiol 141 : 583-588, 1993 https://doi.org/10.1016/S0176-1617(11)80460-8
  3. Chaloupkova K, Smart CC: The abscisic acid induction of a novel peroxidase is antagonized by cytokinin in Spirodela polyrhiza (L.). Plant Physiol 105 : 497-507, 1994 https://doi.org/10.1104/pp.105.2.497
  4. Fahn A: Plant Anatomy. 4th Ed. Pergamon Press, pp. 10-49, 513-532, 1990
  5. Harada T, Ishizawa K: Starch degradation and sucrose metabolism during anaerobic growth of pondweed (Potamogeton distinctus A. Benn.) turions. Plant and Soil 253 : 125-135, 2003 https://doi.org/10.1023/A:1024585015697
  6. Ji SY, Kim IS: Structural features of various trichomes developed in Salvinia natans. Kor J Electron Microsc 32 : 319-327, 2002
  7. Jian Y, Li B, Wang J, Chen J: Control of turion germination in Potamogeton crispus. Aquat Bot 75 : 59-69, 2003 https://doi.org/10.1016/S0304-3770(02)00165-1
  8. Kim KA, Kim IS: Structural aspect of the reduced free-floating hydrophyte, Spirodela polyrhiza. Kor J Electron Microsc 30 : 233-240, 2000
  9. Landolt E: Biosystematic Investigations in the Family of Duckweeds (Lemnaceae); Vol. 2 The family of Lemnaceae a monographic study. Vol 1: 566, 1986
  10. Lee KB: Plant Morphology. Life Science, p. 91, 167-168, 306-308, 2004
  11. Lee SM, Tanaka MS, Kang CM, Jung SY: Science of Hydrophytes. Chonnam University Publishing, pp. 76-85, 2005
  12. Lee YN: Illustrated Flora of Korea Plant Biology. Kyohak Publishing Co., p. 1054, 1996
  13. Lemon GD, Posluszny U: Shoot morphology and organogenesis of the aquatic floating fern Salvinia molesta. D. S. Mitchell, examined with the aid of laser scanning confocal microscopy. Intl J Plant Sci 158 : 693-703, 1997 https://doi.org/10.1086/297481
  14. Ley S, Dolger K, Appenroth KJ: Carbohydrate metabolism as a possible physiological modulator of dormancy in turion of Spirodela polyrhiza (L.) Schlieden. Plant Sci 129 : 1-7, 1997 https://doi.org/10.1016/S0168-9452(97)00151-9
  15. Lim DB, Ko KS, Lim OK: Plant Morphology. Woosung Publishing, pp. 493-510, 1992
  16. Mauseth JD: Plant Anatomy. The Benjamin Cummings Publishing Co., Menlo Park. pp. 415-437, 1988
  17. Mclaly CL: The effect pH on the population growth of three species of duckweed: Spirodela polyrhiza, Lemna minor and Wolffia arrhiza. Freshwater Biol 6 : 125-136, 1976 https://doi.org/10.1111/j.1365-2427.1976.tb01596.x
  18. Turion formation and germination in Spirodela polyrhiza. Amer J Bot 65 : 421-428, 1978 https://doi.org/10.2307/2442698
  19. Reimann R, Ziegler P, Appenroth K: The binding of $\alpha$-amylase to starch plays a decisive role in the initiation of storage starch degradation in turions of Spirodela ployrhiza. Physiol Plant 129 : 334-341, 2007 https://doi.org/10.1111/j.1399-3054.2006.00816.x
  20. Sculthorpe CD: The Biology of Aquatic Vascular Plants. Edward Arnold Ltd, pp. 198-208, 1967
  21. Sibaski T, Oda Y: Heterogeneity of dormancy in the turion of Spiodela polyrhiza. Plant Cell Physiol 20 : 563-571, 1979
  22. Smart CC, Trewavas AJ: Abscisic-acid-induced turion formation in Spirodela polyrhiza L. II. Ultrastructure of the turion; a stereological analysis. Plant Cell Environ 6 : 515-522, 1983
  23. Tobiessen P, Snow PD: Temperature and light effects on the growth of Potamogeton crispus in Collins Lake, New York State, J Bot 62 : 2822-2826, 1984 https://doi.org/10.1139/b84-376
  24. Weber JA, Nooden LD: The cause of sinking and floating in turion of Myriophyllum verticillatum. Aquat Bot 83 : 219-226, 2005 https://doi.org/10.1016/j.aquabot.2005.06.008