Abstract
This study examines the influence of control algorithms on dimming performance to determine appropriate control setting when direct/indirect lighting is controlled by a daylight dimming system. Computer simulation were performed for a small office with double skin envelope under various daylight conditions. A retractable fabric shading and Venetian blind were applied for internal and external envelopes under three CIE standard sky conditions. Unshielded and partially-shielded photosensors were used, and three control algorithms were applied for the sensors. In general, dimming level was too excessive due to the direct impact of light from lighting fixture to the photosensor. Providing insufficient lighting output, the unshielded photosensor completely failed to secure required illuminance under any daylight condition. When a partially-shielded photosensor was applied under clear sky, three setting points functioned effectively. Less sensitivity for the partially-shielded photosensor was effective to control the dimming system optimally with reasonable energy saving. However, the daylight dimming control system for direct/indirect lighting does not appear to be energy effective when photosensors without enough shielded area is installed on ceiling where light from fixtures reaches directly.