참고문헌
- 김남욱, 이상귀, 한병용, 배주성, "하이브리드 강섬유보강 콘크리트의 휨파괴 특성," 대한토목학회논문집, 23권, 4-A호, 2003, pp. 619-625
- Qian, C. X. and Stroeven, P, "Development of Hybrid Polypropylene-Steel Fibre-Reinforced Concrete," Cement and Concrete Research, Vol. 30, 2000, pp. 63-60 https://doi.org/10.1016/S0008-8846(99)00202-1
- Yao, U., Li, J., and Wu, K., "Mechanical Properties of Hybrid Fiber-Reinforced Concrete at Low Fiber Volume Fraction," Cement and Concrete Research, Vol. 33, No. 1, 2003, pp. 27-30 https://doi.org/10.1016/S0008-8846(02)00913-4
- 원종필, 박경훈, 박찬기, 이상우, "지하공간 콘크리트구조물의 역학적 특성 및 내화성능 향상을 위한 하이브리드섬유보강 콘크리트의 성능 평가," 대한토목학회논문집, 27권, 4A호, 2007, pp. 627-633
- 원종필, 박경훈, 박찬기, 이시원, "터널 및 지하 공간 콘크리트 구조물의 폭렬방지를 위한 하이브리드 폴리프로필렌섬유의 효과," 대한토목학회논문집, 27권, 3C호, 2007, pp. 229-235
- Haukur, I. and Anders, L., "Recent Achievents Regarding Measuring of Time-Heat and Time-Temperature Development in Tunnel," Safe and Tunnels, First International Symposium, Prague, 2004, pp. 87-96
- Japan Concrete Institute, Method of Tests for Flexural Strength and Flexural Toughness of Fiber Reinforced Concrete, JCI SF-4, Tokyo, Japan, 1983, pp. 35-36
- Mindess, S., Francis, J., and Darwin, D., Concrete, 2nd edition, Pentis Hall, NJ, USA, 2003, pp. 417-418
- Kraai, P. P., "A Proposed Test to Determine the Cracking Potential due to Drying Shrinkage of Cracking," Concrete Construction, Vol. 30, No. 9, 1985, pp. 775-778
- 원종필, 최석원, 박찬기, 박해균, "내화용 고강도 습식 스프레이 폴리머 모르타르의 화재 저항성 평가," 콘크리트학회 논문집, 18권, 4호, 2006, pp. 559-568 https://doi.org/10.4334/JKCI.2006.18.4.559
- 김낙영, 심재원, 심종성, 원종필, "터널 콘크리트 라이닝 폭열 방지를 위한 폴리프로필렌 섬유 혼입률 분석 연구," 터널기술, 7권, 4호, 2005, pp. 323-333
- 원종필, 박찬기, 안태송, "폴리프로필렌섬유보강 콘크리트의 수축균열 및 내구 특성," 대한토목학회논문집, 19권, I-5호, 1999, pp. 783-790
- Pirre, K., Gregoire, C., and Christophe, G., "High-Temperature Behaviour of HPC with Polypropylene Fiber from Spalling to Microstructure," Cement and Concrete Research, Vol. 31, 2001, pp. 1487-1499 https://doi.org/10.1016/S0008-8846(01)00596-8
- Chen, B. and Liu, J., "Residual Strength of Hybrid-Fiber-Reinforced High-Strength Concrete after Exposure to High Temperature," Cement and Concrete Research, Vol. 34, No. 6, 2004, pp. 1065-1069 https://doi.org/10.1016/j.cemconres.2003.11.010
- Poon, C. S., Shui, Z. H., and Lam, L., "Compressive Behavior of Fiber Reinforced High-Performance Concrete Subjected to Elevated Temperature," Cement and Concrete Research, Vol. 34, No. 12, 2004, pp. 2215-2222 https://doi.org/10.1016/j.cemconres.2004.02.011
- Matthias Zeiml, David Leithner, Roman Lackner, and Herbert A. Mang, "How do Polypropylene Fibers Improve the Spalling Behavior of in-Situ Concrete?," Cement and Concrete Research, Vol. 36, No. 5, 2006, pp. 929-945 https://doi.org/10.1016/j.cemconres.2005.12.018
- Jianzhuang Xiaoa, H. "Falknerb On Residual Strength of High-Performance Concrete with and without Polypropylene Fibres at Elevated Temperatures," Fire Safety Journal, Vol. 41, No. 2, 2006, pp. 115-121 https://doi.org/10.1016/j.firesaf.2005.11.004
- Serdar Aydin, Halit Yazici, and Bulent Baradan, "Hgh Temperature Resistance of Normal Strength and Autoclaved High Strength Mortars Incorporated Polypropylene and Steel Fibers," Construction and Building Materials, 2007, In Press
- Kalifa, P. and Menneteau, F. D. and Quenard, D., "Spalling and Pore Pressure in HPC at High Temperatures," Cement & Concrete Rearch, Vol. 30, 2000, pp. 1-13 https://doi.org/10.1016/S0008-8846(99)00207-0
- Georgali, B. and Tsakiridis, P. E., "Microstructure of Fire- Damaged Concrete," Cement and Concrete Composites, Vol. 27, 2004, pp. 255-259