DOI QR코드

DOI QR Code

고온에서 하이브리드 섬유보강 콘크리트의 성능

Performance of Hybrid Fiber Reinforced Concrete at Elevated High Temperature

  • 원종필 (건국대학교 사회환경시스템공학과) ;
  • 박경훈 (건국대학교 사회환경시스템공학과) ;
  • 박찬기 (공주대학교 지역건설공학)
  • Won, Jong-Pil (Dept. of Civil and Environmental System Engineering, Konkuk University) ;
  • Park, Kyung-Hoon (Dept. of Civil and Environmental System Engineering, Konkuk University) ;
  • Park, Chan-Gi (Dept. of Rural Construction Engineering, Kongju National University)
  • 발행 : 2008.06.30

초록

본 연구에서는 강섬유와 서로 다른 직경 및 길이를 가진 폴리프로필렌섬유를 혼합한 하이브리드 섬유보강 콘크리트의 압축강도, 수축균열 및 고온에서 화재저항성을 평가하였다. 압축강도, 쪼갬인장강도, 휨시험 및 수축균열저항성을 평가하기 위하여 실시하였으며 또한 400$^{\circ}C$, 600$^{\circ}C$, 800$^{\circ}C$ 및 1,200$^{\circ}C$에 노출 후 물리 역학정 특성을 평가하기 위하여 표면관찰, 질량손실 및 잔류압축강도 시험을 실시하였다. 시험 결과 하이브리드 섬유보강 콘크리트는 역학적 성능, 수축균열저항성 및 화재저항성을 향상시켰으며 온도 변화에 따른 콘크리트의 성능 저하는 온도가 $600\sim800^{\circ}C$의 범위일 때 가장 컸다.

This study evaluated the mechanical performance, shrinkage crack and fire resistance of hybrid fiber (blended steel and polypropylene fiber with different diameter and length) reinforced concrete at elevated temperature. The compressive, splitting tensile, flexural, plastic shrinkage test were conducted to the evaluate the mechanical properties and the resistance of shrinkage crack. Also, the surface investigation, reduction rate of mass and residual compressive test were performed to evaluate the physical and mechanical properties after 400$^{\circ}C$, 600$^{\circ}C$, 800$^{\circ}C$ and 1,200$^{\circ}C$ exposure. Test results showed that the hybrid fiber reinforced concrete improved the mechanical performance, shrinkage crack and fire resistance. The reduction of performance with a temperature change were high at the temperature of $600\sim800^{\circ}C$.

키워드

참고문헌

  1. 김남욱, 이상귀, 한병용, 배주성, "하이브리드 강섬유보강 콘크리트의 휨파괴 특성," 대한토목학회논문집, 23권, 4-A호, 2003, pp. 619-625
  2. Qian, C. X. and Stroeven, P, "Development of Hybrid Polypropylene-Steel Fibre-Reinforced Concrete," Cement and Concrete Research, Vol. 30, 2000, pp. 63-60 https://doi.org/10.1016/S0008-8846(99)00202-1
  3. Yao, U., Li, J., and Wu, K., "Mechanical Properties of Hybrid Fiber-Reinforced Concrete at Low Fiber Volume Fraction," Cement and Concrete Research, Vol. 33, No. 1, 2003, pp. 27-30 https://doi.org/10.1016/S0008-8846(02)00913-4
  4. 원종필, 박경훈, 박찬기, 이상우, "지하공간 콘크리트구조물의 역학적 특성 및 내화성능 향상을 위한 하이브리드섬유보강 콘크리트의 성능 평가," 대한토목학회논문집, 27권, 4A호, 2007, pp. 627-633
  5. 원종필, 박경훈, 박찬기, 이시원, "터널 및 지하 공간 콘크리트 구조물의 폭렬방지를 위한 하이브리드 폴리프로필렌섬유의 효과," 대한토목학회논문집, 27권, 3C호, 2007, pp. 229-235
  6. Haukur, I. and Anders, L., "Recent Achievents Regarding Measuring of Time-Heat and Time-Temperature Development in Tunnel," Safe and Tunnels, First International Symposium, Prague, 2004, pp. 87-96
  7. Japan Concrete Institute, Method of Tests for Flexural Strength and Flexural Toughness of Fiber Reinforced Concrete, JCI SF-4, Tokyo, Japan, 1983, pp. 35-36
  8. Mindess, S., Francis, J., and Darwin, D., Concrete, 2nd edition, Pentis Hall, NJ, USA, 2003, pp. 417-418
  9. Kraai, P. P., "A Proposed Test to Determine the Cracking Potential due to Drying Shrinkage of Cracking," Concrete Construction, Vol. 30, No. 9, 1985, pp. 775-778
  10. 원종필, 최석원, 박찬기, 박해균, "내화용 고강도 습식 스프레이 폴리머 모르타르의 화재 저항성 평가," 콘크리트학회 논문집, 18권, 4호, 2006, pp. 559-568 https://doi.org/10.4334/JKCI.2006.18.4.559
  11. 김낙영, 심재원, 심종성, 원종필, "터널 콘크리트 라이닝 폭열 방지를 위한 폴리프로필렌 섬유 혼입률 분석 연구," 터널기술, 7권, 4호, 2005, pp. 323-333
  12. 원종필, 박찬기, 안태송, "폴리프로필렌섬유보강 콘크리트의 수축균열 및 내구 특성," 대한토목학회논문집, 19권, I-5호, 1999, pp. 783-790
  13. Pirre, K., Gregoire, C., and Christophe, G., "High-Temperature Behaviour of HPC with Polypropylene Fiber from Spalling to Microstructure," Cement and Concrete Research, Vol. 31, 2001, pp. 1487-1499 https://doi.org/10.1016/S0008-8846(01)00596-8
  14. Chen, B. and Liu, J., "Residual Strength of Hybrid-Fiber-Reinforced High-Strength Concrete after Exposure to High Temperature," Cement and Concrete Research, Vol. 34, No. 6, 2004, pp. 1065-1069 https://doi.org/10.1016/j.cemconres.2003.11.010
  15. Poon, C. S., Shui, Z. H., and Lam, L., "Compressive Behavior of Fiber Reinforced High-Performance Concrete Subjected to Elevated Temperature," Cement and Concrete Research, Vol. 34, No. 12, 2004, pp. 2215-2222 https://doi.org/10.1016/j.cemconres.2004.02.011
  16. Matthias Zeiml, David Leithner, Roman Lackner, and Herbert A. Mang, "How do Polypropylene Fibers Improve the Spalling Behavior of in-Situ Concrete?," Cement and Concrete Research, Vol. 36, No. 5, 2006, pp. 929-945 https://doi.org/10.1016/j.cemconres.2005.12.018
  17. Jianzhuang Xiaoa, H. "Falknerb On Residual Strength of High-Performance Concrete with and without Polypropylene Fibres at Elevated Temperatures," Fire Safety Journal, Vol. 41, No. 2, 2006, pp. 115-121 https://doi.org/10.1016/j.firesaf.2005.11.004
  18. Serdar Aydin, Halit Yazici, and Bulent Baradan, "Hgh Temperature Resistance of Normal Strength and Autoclaved High Strength Mortars Incorporated Polypropylene and Steel Fibers," Construction and Building Materials, 2007, In Press
  19. Kalifa, P. and Menneteau, F. D. and Quenard, D., "Spalling and Pore Pressure in HPC at High Temperatures," Cement & Concrete Rearch, Vol. 30, 2000, pp. 1-13 https://doi.org/10.1016/S0008-8846(99)00207-0
  20. Georgali, B. and Tsakiridis, P. E., "Microstructure of Fire- Damaged Concrete," Cement and Concrete Composites, Vol. 27, 2004, pp. 255-259