• Title/Summary/Keyword: 하이브리드 섬유보강 콘크리트

Search Result 68, Processing Time 0.022 seconds

Slump and Mechanical Properties of Hybrid Steel-PVA Fiber Reinforced Concrete (강섬유와 PVA 섬유로 하이브리드 보강된 콘크리트의 슬럼프 및 역학적 특성)

  • Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.651-658
    • /
    • 2010
  • Sixteen concrete mixes reinforced with hybrid steel-polybinyl alcohol (PVA) fibers and a control concrete mix with no fiber were tested in order to examine the effect of the micro and macro fibers on the slump and different mechanical properties of concrete. Main variables investigated were length and volume fraction of steel and PVA fibers. The measured mechanical properties of hybrid fiber reinforced concrete were analyzed using the fiber reinforcing index and compared with those recorded from monolithic steel or PVA fiber reinforced concrete. The initial slump of hybrid fiber reinforced concrete decreased with the increase of the aspect ratio and the volume fraction of fibers. In addition, splitting tensile strength, modui of rupture and elasticity, and flexural toughness index of concrete increased with the increase of the fiber reinforcement index. Modulus of rupture and flexural toughness index of hybrid fiber reinforced concrete were higher than those of monolithic fiber reinforced concrete, though the total volume fraction of hybrid fibers was lower than that of monolithic fiber. For enhancing the flexural toughness index of hybrid fiber reinforced concrete, using the steel fiber of 60 mm length was more effective than using the steel fibers combined with 60 mm and 30 mm lengths.

Material Model for Compressive and Tensile Behaviors of High Performance Hybrid Fiber Reinforced Concrete (고성능 하이브리드 섬유보강 콘크리트의 압축 및 인장 거동에 대한 재료모델)

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.311-321
    • /
    • 2021
  • Many studies have been performed on hybrid fiber reinforced concrete for years, which is to improve some of the weak material properties of concrete. Studies on characteristics of hybrid fiber reinforced concrete using amorphous steel fiber and organic fiber, however, yet remain to be done. The purpose of this research is to evaluate the compressive and tensile behaviors and then propose a material model of high performance hybrid fiber reinforced concrete using amorphous steel fiber and polyamide fiber. For this purpose, the high performance hybrid fiber reinforced concretes were made according to their total volume fraction of 1.0% for target compressive strength of 40MPa and 60MPa, respectively, and then the compressive and tensile behaviors of those were evaluated. Also, based on the experimental results of the high performance hybrid fiber reinforced concrete and mortar, each material model for the compressive and tensile behavior was suggested. It was found that the experimental results and the proposed models corresponded relatively well.

A Processing and Flexural Performance Evaluation of Hybrid Organic Fiber Reinforced Concrete (하이브리드 유기섬유 보강 콘크리트의 제조 및 휨성능 평가)

  • Jeon, Chanki;Jeon, Joongkyu;Shim, Jaeyeong
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.213-220
    • /
    • 2017
  • Organic fiber reinforced concrete is applicable to many applications for construction material. In general, organic fibers have low tensile strength and elastic modulus, but they have many advantages such as high crack resistance, impact resistance, chemical resistance, flexural behavior and corrosion resistance. In this study, hybrid organic fibers were prepared by mixing polyamide (PA) fibers and high strength polyester (PET) fibers. Then, flexural performance test of fiber reinforced concrete containing hybrid organic fiber was performed. The energy absorption capacity of the hybrid organic fiber reinforced concrete was evaluated.

Chloride Penetration Resistance and Flexural Behavior of Hybrid Organic Fibers Reinforced Concrete (유기계 섬유로 하이브리드 보강된 콘크리트의 휨 거동 및 염분침투저항성)

  • Kim, Seung Hyun;Kang, Min Bum;Lee, Dong Wook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.105-115
    • /
    • 2015
  • In this study, to understand mechanical characteristic of hybrid reinforced concrete by PVA-fiber 6 mm and PP-fiber 50 mm, which are organic fiber replaced macro-fiber with PP-fiber, four mixed Hybrid Organic Fibers Reinforced Concrete (HFRC) is compared with one mixed plain concrete without fiber reinforcement. Volume portion of the fibers are limited under one percent. The result presents that hybrid reinforcement of the organic fibers cannot maximize stiffness and ductility behavior of the steel fiber reinforcement. however, in comparison to plain concrete, it is confirmed that meaningful relation between toughness index and equivalent flexural strength with advanced ductility behavior. Also, in the case of concrete hybrid reinforced by organic fiber, when the volume portion of the fiber increases, ductility also increases. PP-fiber, which is macro fiber, has more effect on the flexural behavior of concrete than PVA-fiber, which is micro fiber, does. The result also shows that it decrease chloride penetration in chloride penetration test.

Flexural Behavior of Hybrid Fiber Reinforcement Strengthened RC Beams (하이브리드 섬유보강재로 보강된 철근콘크리트 보의 휨거동)

  • Yi, Seong-Tae;Lee, Chin-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.79-86
    • /
    • 2010
  • This study was performed to evaluate the flexural behavior of Hybrid fiber sheet (HFC) and Hybrid fiber bar (HFB) strengthened reinforced concrete (RC) beams. According to test results, Hybrid fiber reinforcement strengthened RC beams showed approximately 60 to 200% higher reinforcing effects than that of un-reinforced specimens. In addition, the reinforced beams showed the ideal failure pattern, which is failed presenting the ductile behavior after yielding of the reinforcing bar. More specifically, in the case of HFB reinforced RC beams, the difference with puttying method was not apparent since HFB beams reinforced using the injection of epoxy and bonding of putty showed the similar failure patterns.

Flexural Strength of Hybrid Steel Fiber-Reinforced Ultra-High Strength Concrete Beams (하이브리드 강섬유 보강 초고강도 콘크리트 보의 휨강도)

  • Yang, In-Hwan;Kim, Kyoung-Chul;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.283-290
    • /
    • 2015
  • This paper proposes a method for predicting flexural strength of hybrid steel fiber-reinforced ultra-high strength concrete beams. It includes an experimental test framework and associated numerical analyses. The experimental program includes flexural test results of hybrid steel fiber-reinforced ultra-high strength concrete beams with steel fiber content of 1.5% by volume. Tensile softening characteristics play an important role in the structural behavior of steel fiber-reinforced ultra high performance concrete. Tension softening modeling is carried out by using crack equation based on fictitious crack and inverse analysis in which load-crack mouth opening displacement relationship is considered. The comparison of moment-curvature curves of the numerical analysis results with the test results shows a reasonable agreement. Therefore, the numerical results confirms that good prediction of flexural behavior of steel fiber-reinforced ultra high strength concrete beams can be achieved by employing the proposed method.

Evaluation for Long Term Drying Shrinkage and Resistance to Freezing and Thawing of Hybrid Fiber Reinforced Concrete (하이브리드 섬유보강 콘크리트의 장기 건조수축 및 내동해성 평가)

  • Kim, Yo-Seb;Bae, Su-Ho;Lee, Hyun-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.60-66
    • /
    • 2019
  • Many researches have been performed on hybrid fiber reinforced concrete for years, which is to improve some of the weak material properties of concrete. Researches on characteristics of hybrid fiber reinforced concrete using amorphous steel fiber and organic fiber, however, yet remain to be done. Therefore, the purpose of this research is to estimate the compressive strength, long term drying shrinkage, and resistance to freezing and thawing of hybrid fiber reinforced concrete(HFRC) using amorphous steel fiber and polyamide fiber as one of organic fibers. For this purpose, HFRCs containing amorphous steel fiber and polyamide fiber were made according to their total volume fraction of 1.0% for target compressive strength of 40 and 60 MPa, respectively, and then the compressive strength, length change, and resistance to freezing and thawing of these were evaluated. As a result, the long term length change ratio of HFRC used in this study decreased by more than 30%, 25% than plain concrete at 365 and 730 days, respectively, and the durability factor of HFRC was very excellent as more than 90%.

Reinforcing Characteristics of Hybrid Fiber Composite Fixed with Impact Anchor (타격식 앵커를 이용한 하이브리드 섬유보강재의 보강특성)

  • Ha, Sang-Su;Choi, Dong-Uk;Lee, Chin-Yong;Kim, Dong-Wan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.453-456
    • /
    • 2008
  • Fiber composite is high anticorrosive, high strength and low weight ratio of strength(1/4 of reinforcing bar) so that strengthens concrete structures without increase of additional weight. But fiber composite has a brittle character which increases to the maximum stress point lineally and is suddenly destroyed. Hybrid fiber composite is developed to overcome weakness of fiber composite. The hybrid fiber composite is manufactured by bar type and consists of 9:1 volume ratio(glass : carbon). In this study the result indicates that it is purposed to find out reinforcing characteristics of hybrid fiber composite fixed with impact anchor.

  • PDF

Optimized Mix Proportioning of Steel and Hybrid Reinforced Concrete Using Harmony Search Algorithm (화음탐색법을 이용한 강섬유 및 하이브리드 섬유보강 콘크리트의 최적배합 설계)

  • Lee, Chi-Hoon;Lee, Joo-Ha;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.151-159
    • /
    • 2006
  • The guide line of the SFRC mix design was not established, and the convenience of the practical application on the spot is not so good. In this paper, hence, the program which is optimized to result the mix proportion by the flexural strength and toughness, was developed to apply to SFRC on the practical spot. This program could minimize the number of trial mixes and get an economical and appropriate mixture. In addition, the theoretical background on which the program is based, will be the basis of the embodied method to mixing SFRC. Additionally, new algorithm, in this paper, was used to develop the mix proportioning program of SFRC. The new algorithm is the Harmony Search which is the heuristic method mimicking the improvisation of music players, Musical performances seek a best state determined by aesthetic estimation, as the optimization algorithms seek a best state determined by objected function value. And, it was developed the program about single fiber reinforced concrete, beside to the hybrid fiber reinforced concrete that two kinds of steel fibers, which have the different geometry, was reinforced. This will be able to keep the world trend to study, hence, offers the basis of the next research about hybrid fiber reinforced concrete.

An Experimental Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete Pavement (하이브리드 섬유로 보강된 콘크리트 포장의 역학적 특성 실험연구)

  • Park, Jong-Sup;Choi, Sung-Yong;Jung, Woo-Tai;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • Cement concrete pavement offers long-term service life and excellent applicability for heavy traffic. It is easier to purchase and more durable and economical than the asphalt pavement. However, it is difficult to repair and rehabilitate compared to the asphalt pavement when it comes to the maintenance problem. Since the crack is the main reason of the damage of concrete pavement, it is necessary to control the early and long-term crack in the concrete pavement. In this experimental study, the basic performance tests have been carried out to investigate the effect of hybrid fibers which were composed of micro fibers with small diameter and high aspect ratio and macro fibers with large diameter and low aspect ratio on the concrete pavement, in which lower water ratio and larger aggregates were used compared to the general concrete mixture. The test results showed that the flexural strength and toughness of concrete pavement mixture have been increased with the use of hybrid fibers in the concrete pavement mixture, even though they were less effective compared to the normal concrete mixture. It was found that the hybrid fibers were effective to control the early shrinkage of the concrete pavement which is one of the main reasons of the damage in the concrete pavement.