DOI QR코드

DOI QR Code

Low Splicing Loss Technique between Standard Single Mode Fiber and High Δ Fiber

표준 단일모드 광섬유와 하이델타 광섬유사이의 저 손실 접속 기법

  • 김광택 (호남대학교 광전자공학과) ;
  • 양병철 (호남대학교 광전자공학과)
  • Published : 2008.06.30

Abstract

In this paper, we have presented techniques to reduce the splicing loss between standard single mode fiber and high ${\Delta}$ single mode fiber based on the mode expanding and mode evolution induced by thermal treatment of the fibers. The experimental results show that mechanical splicing loss can be reduced from 2.3 dB to 0.1 dB through proper thermal treatment of the high ${\Delta}$ fiber. Meanwhile, we achieved $0.2{\sim}0.4dB$ of low splicing loss between two fibers by heating the splicing region using electric arcing or an oxygen flame.

열처리에 의한 광섬유 코어의 모드 확산과 모드 진화 현상을 이용하여 일반 통신용 단일모드 광섬유와 하이텔타(high ${\Delta}$) 광섬유 사이의 접속 손실을 줄일 수 있는 기법들을 제시하였다. 실험결과는 하이텔타 광섬유의 적절한 열처리를 통해 기계적 접속 손실이 2.3 dB에서 0.1 dB까지 감소함을 나타내었다. 반면 융착접속 후 접속 부위에 전기 방전이나 산소 불꽃으로 열을 인가하는 방법으로 $0.2{\sim}0.4dB$ 정도의 접속 손실을 달성하였다.

Keywords

References

  1. Y. Hibino, “Recent advances in high density and large scale AWG multi/Demultiplexers with high index contrast silicabased PLCs,” IEEE J. of Selected Topics in Quantum Electronics, vol. 8, no 6, pp. 1090-1101, 2002 https://doi.org/10.1109/JSTQE.2002.805965
  2. Yu-Cheng Lin and San-Chien Lin, “Thermally expanded core fiber with high numerical aperture for laser-diode coupling,” Microwave and optical technol. lett., vol. 48, no. 5, pp. 979-981, 2006 https://doi.org/10.1002/mop.21539
  3. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Optics Lett., vol. 27, no. 22, pp. 2010-2012, 2002 https://doi.org/10.1364/OL.27.002010
  4. Y. Nishida, T. Kanamori, Y. Ohishi, M. Yamada, K. Kobayashi, and S. Sudo, “Efficient PDFA module using high-NA PbF2/InF3-based fluoride fiber,” IEEE photonics technology letters, vol. 9, no. 3, pp. 318-320, 1997 https://doi.org/10.1109/68.556059
  5. A. Ishikura, Y. Kato, and M. Miyauchi, “Taper splice method for single-mode fibers,” Appl. Opt., vol. 25, pp. 3460-3465, 1986 https://doi.org/10.1364/AO.25.003460
  6. Mehendra P. Singh, James O Reese, T. Michael Wel, and D. G. Storch, “Low-loss fusion splicing of erbium-doped optical fiber for high performance fiber amplifiers,” IEEE Transactions on components, hybrids and manufacturing Technol., vol. 13, no. 14, pp. 811-813, 1990 https://doi.org/10.1109/33.62523
  7. Kunihara Himeno, “Fusion splicing techniques for photonic crystal fibers,” The review of laser engineering, vol. 34, no. 1, pp. 42-46, 2006 https://doi.org/10.2184/lsj.34.42
  8. T. Haibara, T. Nakashima, M. Matsumoto, and H. Hanafusa, “Connection loss reduction by thermally diffused expended core fiber,” IEEE. Phtonics Technol. Lett., vol. 3, no. 4, pp. 348-350, 1990
  9. K. Shiraishi, Yoshizo, and S. Kawakami, “Beam expending fiber using thermal diffusion of the dopand,” J. Lightwave Technol., vol. 8, no. 8, pp. 1151-1161, 1990 https://doi.org/10.1109/50.57835
  10. K. Shiraishi, T. Yanagi, and S. Kawakami, “Light Propagation characteristics in thermally diffused expanded core fibers,” J. Lightwave Technol., vol. 11, no. 10, pp. 1584-1591, 1993 https://doi.org/10.1109/50.249900
  11. O. Hanaizumi, Y. Aizawa, H. Minamide, and S. Kawakami, “Fabrication of an expended core fiber having MFD of 40 $\mu$m preserving outer diameter,” IEEE Phonic Technol. Lett., vol. 6, no. 7, pp. 842-844. 1994 https://doi.org/10.1109/68.311473
  12. Fielding, A. J., Edinger, K., Davis, C. C. “Experimental observation of mode evolution in single-mode tapered optical fibers,” Journal of lightwave technology : a joint IEEE/OSA publication, vol. 17, no. 9, pp. 1649-1656, 1999 https://doi.org/10.1109/50.788571
  13. Y. Ohtera, O. Hanaizumi, and S. Kawakami, “Numerical analysis of eigenmodes and splice losses of thernally expanded core fiber,” J. Lightwave Technol., vol. 17, no. 12, pp. 2675-2682, 1999 https://doi.org/10.1109/50.809689