DOI QR코드

DOI QR Code

수중충격파를 이용하여 충격고화와 반응합성으로 제조된 Ti5Si3 금속간 화합물의 표면코팅 층의 특성에 관한 연구

Characteristics of the Surface Coating Layer of Ti5Si3 Intermetallic Compound Obtained by Shock Compaction and Reaction Synthesis Through Underwater Shock Compression

  • 이상훈 (한국원자력연구원 원자력재료연구부)
  • Lee, Sang-Hoon (Nuclear Material Research Division, Korea Atomic Energy Research Institute)
  • 발행 : 2008.04.28

초록

The objective of the present study is to investigate the increase in the functional characteristics of a substrate by the formation of a thin coating layer. Thin coating layers of $Ti_5Si_3$ have high potential because $Ti_5Si_3$ exhibits high hardness. Shock induced reaction synthesis is an attractive fabrication technique to synthesize uniform coating layer by controlling the shock wave. Ti and Si powders to form $Ti_5Si_3$ using shock induced reaction synthesis, were mixed using high-energy ball mill into small scale. The positive effect of this technique is highly functional coating layer on the substrate due to ultra fine substructure, which improves the bonding strength. These materials are in great demand as heat resisting, structural and corrosion resistant materials. Thin $Ti_5Si_3$ coating layer was successfully recovered and showed high Vickers' hardness (Hv=1183). Characterization studies on microstructure revealed a fairly uniform distribution of powders with good interfacial integrity between the powders and the substrate.

키워드

참고문헌

  1. K. Hokamoto, J. S. Lee, M. Fujita, S. Itoh and K. Raghukandan: J. Mater. Sci., 37 (2002) 4073 https://doi.org/10.1023/A:1020071416063
  2. P. S. Decarli and J. C. Jamieson: Science, 133 (1961) 821 https://doi.org/10.1126/science.133.3467.1821
  3. N. N. Thadhani, A. H. Mutz and T. Vreeland Jr: Acta Metall., 37 (1989) 897 https://doi.org/10.1016/0001-6160(89)90016-3
  4. M. A. Meyers: Dynamic Behavior of Materials, Wiley, (1994)
  5. M. A. Meyers and S. L. Wang: Acta Metall., 36 (1988) 925 https://doi.org/10.1016/0001-6160(88)90147-2
  6. K. Hokamoto, S. Tanaka, M. Fujita, T. Kodama and Y. Ujimoto: Scripta Mater., 39 (1998) 1383 https://doi.org/10.1016/S1359-6462(98)00311-X
  7. S.-H. Lee, K. Hokamoto, J. S. Lee and S.H. Khameneh Asl: Proc. ACHPR-2, Nara, Japan Nov.1-5, 2004, (2005). (Total 6 pages as CD-ROM)
  8. S. A. Namjoshi and N. N. Thadhani: Scr. Mater., 40 (1999) 1347 https://doi.org/10.1016/S1359-6462(99)00083-4
  9. P. J. Counihan, A. Crawford and N. N. Thadhani: Mater. Sci. & Eng. A, 267 (1999) 26 https://doi.org/10.1016/S0921-5093(99)00056-8
  10. A. Mori, K. Hokamoto and M. Fujita: Mater. Sci. Forum, 465-465 (2004) 307
  11. K. Hokamoto, Y. Ujimoto and M. Fujita: Mater. Trans., 45 (2004) 2897 https://doi.org/10.2320/matertrans.45.2897
  12. K. Hokamoto, T. Izuma and M. Fujita: Metall. Trans. A, 24A (1993) 2289
  13. K. Hokamoto, S. Tanaka and M. Fujita: Int. J. Impact Eng., 24 (2000) 631 https://doi.org/10.1016/S0734-743X(99)00034-2
  14. A. Chiba, M. Fujita, M. Nishida, K. Imamura and R. Tomoshige: Shock-Wave and High-Strain-Rate Phenomena in Materials, M. A. Meyers, L. E. Murr and K. P. Staudhammer(Ed.), Marcel Dekker, New York, (1992) 415
  15. L. H. Yu and M. A. Meyers: J. Mater. Sci., 26 (1991) 601 https://doi.org/10.1007/BF00588294
  16. N. N. Thadhani, S. Namjoshi, P. J. Counihan and A. Crawford: Journal of Materials Processing Technology, 85 (1999) 74-78 https://doi.org/10.1016/S0924-0136(98)00264-7