Agrobactrium tumefaciens-Mediated Transformation of Monascus ruber

  • Yang, Yun-Jung (Department of Foods and Nutrition, Kookmin University) ;
  • Lee, In-Hyung (Department of Foods and Nutrition, Kookmin University)
  • Published : 2008.04.30

Abstract

Agrobacterium tumefaciens-mediated transformation (ATMT) was successfully applied to Monascus ruber. The optimum cocultivation time was 84 h with an efficiency of 900 to 1,000 transformants when $1{\times}10^6$ spores were used with the same volume of bacteria. The stability of transform ants was over 98% after five generations. When M. ruber was transformed with A. tumefaciens YL-63 containing the green fluorescent protein gene (egfp), the green fluorescent signal was observed throughout hyphae, confirming expression of the gene. This efficient transformation and expression system of M. ruber by ATMT will facilitate the study of this fungus at a molecular genetic level.

Keywords

References

  1. Blanc, P. J., M. O. Loret, and G. Goma. 1995. Production of citrinin by various species of Monascus. Biotechnol. Lett. 17: 291-294 https://doi.org/10.1007/BF01190639
  2. Blanc, P. J., J. P. Laussac, J. Le Bars, P. Le Bars, M. O. Loret, A. Pareilleux, D. Prome, J. C. Prome, A. L. Santerre, and G. Goma. 1995. Characterization of monascidin A from Monascus as citrinin. Int. J. Food Microbiol. 27: 201-213 https://doi.org/10.1016/0168-1605(94)00167-5
  3. Bundock, P., A. den Dulk-Ras, A. Beijersbergen, and P. J. J. Hooykass. 1995. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14: 3206-3214
  4. Campoy, S., F. Perez, J. F. Martin, S. Gutierrez, and P. Liras. 2003. Stable transformants of the azaphilone pigment-producing Monascus purpureus obtained by protoplast transformation and Agrobacterium-mediated DNA transfer. Curr. Genet. 43: 447- 452 https://doi.org/10.1007/s00294-003-0417-0
  5. de Groot, M. J. A., P. Bundock, P. J. J. Hooykass, and A. G. Beijersbergen. 1998. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol. 16: 839- 842 https://doi.org/10.1038/nbt0998-839
  6. Endo, A. 1979. Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. J. Antibiot. (Tokyo) 32: 852- 854 https://doi.org/10.7164/antibiotics.32.852
  7. Endo, A., D. Komagata, and H. Shimada. 1986. Monacolin M, a new inhibitor of cholesterol biosynthesis. J. Antibiot. (Tokyo) 39: 1670-1673 https://doi.org/10.7164/antibiotics.39.1670
  8. Erdogrul, O. and S. Azirak. 2004. Review of the studies on the red yeast rice (Monascus purpureus). Turkish Elec. J. Biotechnol. 2: 37-49
  9. Hajiaj, H., A. Klaebe, M. O. Loret, G. Goma, P. J. Blanc, and J. Francois. 1999. Biosynthetic pathway of citrinin in the filamentous fungus Monascus ruber as revealed by 13C nuclear magnetic resonance. Appl. Environ. Microbiol. 65: 311-314
  10. Hooykass, P. J. J., C. Roobol, and R. A. Schilperoort. 1979. Regulation of the transfer of Ti-plasmids of Agrobacterium tumefaciens. J. Gen. Microbiol. 110: 99-109 https://doi.org/10.1099/00221287-110-1-99
  11. Kim, J.-G., Y. D. Choi, Y.-J. Chang, and S.-U. Kim. 2003. Genetic transformation of Monascus purpureus DSM1379. Biotechnol. Lett. 25: 1509-1514 https://doi.org/10.1023/A:1025438701383
  12. Lakrod, K., C. Chaisrisook, and D. Z. Skinner. 2003. Expression of pigmentation genes following electroporation of albino Monascus purpureus. J. Ind. Microbiol. Biotechnol. 30: 369-374 https://doi.org/10.1007/s10295-003-0058-9
  13. Michielse, C. B., P. J. J. Hooykass, C. A. M. J. J. van den Hondel, and A. F. J. Ram. 2005. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr. Genet. 48: 1-17 https://doi.org/10.1007/s00294-005-0578-0
  14. Mullins, E. D., X. Chen, P. Romaine, R. Raina, D. M. Geiser, and S. Kang. 2001. Agrobacterium-mediated transformation of Fusarium oxysporum: An efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91: 173-180 https://doi.org/10.1094/PHYTO.2001.91.2.173
  15. Norlha, T. and I. Lee. 2005. Protoplast preparation and regeneration from young hyphae of the citrinin producing fungus Monascus ruber. Food Sci. Biotechnol. 14: 543-546
  16. Reis, M. C., M. H. Pelegrinelli Fungaro, R. T. Delgado Duarte, L. Furlaneto, and M. C. Furlaneto. 2004. Agrobacterium tumefaciens-mediated genetic transformation of the entomopathogenic fungus Beauveria bassiana. J. Microbiol. Methods 58: 197-202 https://doi.org/10.1016/j.mimet.2004.03.012
  17. Rho, H.-S., S. Kang, and Y.-H. Lee. 2001. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Mol. Cells 12: 407-411
  18. Sabater-Vilar, M., R. F. M. Maas, and J. Fink-Gremmels. 1999. Mutagenicity of commercial Monascus fermentation products and the role of citrinin contamination. Mut. Res. 444: 7-16 https://doi.org/10.1016/S1383-5718(99)00095-9
  19. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  20. Su, Y.-C., J.-J. Wang, T.-T. Lin, and T.-M. Pan. 2003. Production of the secondary metabolites $\gamma$-aminobutyric acid and monakolin K by Monascus. J. Ind. Microbiol. Biotechnol. 30: 41-46 https://doi.org/10.1007/s10295-002-0001-5