Current Conduction Model of Depletion-Mode N-type Nanowire Field-Effect Transistors (NWFETS)

공핍 모드 N형 나노선 전계효과 트랜지스터의 전류 전도 모델

  • Yu, Yun-Seop (Department of Information & Control Engineering and Electronic Technology Institute, Hankyong National University) ;
  • Kim, Han-Jung (Department of Information & Control Engineering and Electronic Technology Institute, Hankyong National University)
  • 유윤섭 (한경대학교 정보제어공학과, 전자종합기술연구소) ;
  • 김한정 (한경대학교 정보제어공학과, 전자종합기술연구소)
  • Published : 2008.04.25

Abstract

This paper introduces a compact analytical current conduction model of long-channel depletion-mode n-type nanowire field-effect transistors (NWFETs). The NWFET used in this work was fabricated with the bottom-up process and it has a bottom-gate structure. The model includes all current conduction mechanisms of the NWFET operating at various bias conditions. The results simulated from the newly developed NWFET model reproduce a reported experimental results within a 10% error.

본 논문은 효율적인 회로 시뮬레이션을 위한 긴 채널 공핍 모드 n형 나노선 전계효과트랜지스터(nanowire field-effect transistor: NWFET)의 간단한 해석적 전류 전도 모델을 소개한다. 본 연구에서 사용된 NWFET는 bottom-up 방식으로 제작되었으며 게이트가 채널의 아래에 존재하는 구조를 가진다. 이 모델은 다양한 바이어스 조건에서 동작하는 NWFET의 모든 전류 전도 메카니즘을 포함한다. 새롭게 개발된 NWFET 모델로 계산된 결과는 이전에 발표된 NWFET 실험 데이터와 비교할 때 10% 오차범위 안에서 서로 일치한다.

Keywords

References

  1. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, "Nanowire electronic and optoelectronic devices", Materials Today, vol. 9, pp. 18-27, 2006
  2. A. Star, J.-C. P. Gabriel, K. Bradley, and G. Gruner, "Electronic detection of specific protein binding using nanotube FET devices", Nano Lett., Vol. 3, pp. 459-463, 2003 https://doi.org/10.1021/nl0340172
  3. J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C. M. Lieber, "Ge/Si nanowire heterostructures as high-performance field-effect transistors", Nature, Vol. 441, pp. 489-493, 2006 https://doi.org/10.1038/nature04796
  4. S. Han, W. Jin, D. Zhang, T. Tang, C. Li, X. Liu, Z. Liu, B. Lei, and C. Zhou, "Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination", Chem. Phys. Lett., Vol. 389, pp. 176-180, 2004 https://doi.org/10.1016/j.cplett.2004.03.083
  5. T. Bryllert, L. Wernersson, T. Lowgren and L. Samuelson, "Vertical wrap-gated nanowire transitors", Nanotechnology, Vol. 17, pp. S227-S230, 2006 https://doi.org/10.1088/0957-4484/17/1/038
  6. V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, U. Gosele, "Realization of a Silicon Nanowire Vertical Surround-Gate Field-Effect Transistor", Small, Vol. 2, pp. 85-88, 2006 https://doi.org/10.1002/smll.200500181
  7. T. L. Wade, X. Hoffer, A. D. Mohammed, J.-F. Dayen, D. Pribat, and J.-E. Wegrowe, "Nanoporous alumina wire templates for surrounding-gate nanowire transistors", Nanotechnology, Vol. 18, pp. 125201-125204, 2007 https://doi.org/10.1088/0957-4484/18/12/125201
  8. W. I. Park, J. S. Kim, G.-C. Yi, M. H. Bae and H.-J. Lee, "Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors", Appl. Phys. Lett., Vol. 85, pp. 5052-5054, 2004 https://doi.org/10.1063/1.1821648
  9. Y. W. Heo, L. C. Tien, Y. Kwon, D. P. Norton, S. J. Pearton, B. S. Kang, and F. Ren, "Depletion-mode ZnO nanowire field-effect transistor", Appl. Phys. Lett., Vol. 85, pp. 2274-2276, 2004 https://doi.org/10.1063/1.1794351
  10. D. Wang, Q. Wang, A. Javey, R. Tu, H. Dai, H. Kim, P. C. Mclntyre, T. Krishnamohan and K. C. Saraswat, "Germanium nanowire field-effect transistors with $SiO_2$ and high-$HfO_2$ gate dielectrics", Appl. Phys. Lett., Vol. 83, pp. 2432-2434, 2003 https://doi.org/10.1063/1.1611644
  11. S.-M. Koo, M. D. Edelstein, Q. Li, C. A. Richter, and E. M. Vogel, "Silicon nanowires as enhancement-mode Schottky barrier field-effect transistors", Nanotechnology, Vol. 16, pp. 1482-1485, 2006 https://doi.org/10.1088/0957-4484/16/9/011
  12. S. Datta, "Nanoscale device modeling: The Green's function method", Superlattices and Microstructures, Vol. 28, pp. 253, 2000 https://doi.org/10.1006/spmi.2000.0920
  13. J. Wang, E. Polizzi, and M. Lundstrom, "A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation", J. Appl. Phys., Vol. 96, pp. 2192-2203, 2004 https://doi.org/10.1063/1.1769089
  14. M. Shin, "Quantum simulation of device characteristics of silicon nanowire FETs," IEEE Trans. Nanotechnology, vol. 6, pp. 230-237, 2007 https://doi.org/10.1109/TNANO.2007.891819
  15. C. Y. Yim, D. Y. Jeon, K. H. Kim, G. T. Ki, Y. S. Woo, S. Roth, J. S. Lee, and S. Kim, "Electrical Properties of the ZnO Nanowire Transistor and its Analysis with Equivalent Circuit Model", J. Kor. Phys. Soc., Vol. 48, pp. 1565-1569, 2006
  16. H.-Y. Cha, H. Wu, M. Chandrashekhar, Y. C. Choi, S. Chae, G. Koley and M. G. Spencer, "Fabrication and characterization of pre-aligned gallium nitride nanowire field-effect transistors", Nanotechnology, Vol. 17, pp. 1264-1271, 2006 https://doi.org/10.1088/0957-4484/17/5/018
  17. J.-P. Colinge, "Conduction Mechanism in Thin-Film Accumulation-Mode SOI p-Channel MOSFET's", IEEE Trans. Electron Devices, Vol. 37, pp. 718-723, 1990 https://doi.org/10.1109/16.47777
  18. D. M. Caughey and R. E. Thomas, "Carrier mobilities in silicon empirically related to doping and field", in Proc. IEEE, Vol. 55, pp. 2192-2193, 1967 https://doi.org/10.1109/PROC.1967.6123
  19. Y. G. Chen, S. Y. Ma, J. B. Kuo, Z. Yu, and R. W. Dutton, "An analytical drain current model considering both electron and lattice temperatures simultaneously for deep submicron ultrathin SOI NMOS devices with self-heating", IEEE Trans. Electron Devices, Vol. 42, pp. 899-906, 1995 https://doi.org/10.1109/16.381986
  20. P. Antognetti, D. D. Caviglia, and E. Profumo, "CAD model for threshold and subthreshold conduction in MNOSFETs", IEEE J. Solid-State Circuits, Vol. SSC-17, pp. 454-458, 1982