Protective Effects of Dodam Water Extract (Dodam) Against Rotenone-Induced Neurotoxicity in Neuro-2A Cells

  • Youn, Myung-Ja (Vestibulocochlear Research Center & Department of Microbiology, School of Medicine) ;
  • Park, Seong-Yeol (Vestibulocochlear Research Center & Department of Microbiology, School of Medicine) ;
  • Park, Cha-Nny (Vestibulocochlear Research Center & Department of Microbiology, School of Medicine) ;
  • Kim, Jin-Kyung (Vestibulocochlear Research Center & Department of Microbiology, School of Medicine) ;
  • Kim, Yun-Ha (Vestibulocochlear Research Center & Department of Microbiology, School of Medicine) ;
  • Kim, Eun-Sook (Vestibulocochlear Research Center & Department of Microbiology, School of Medicine) ;
  • Moon, Byung-Soon (School of Oriental Medicine, Wonkwang University) ;
  • So, Hong-Seob (Vestibulocochlear Research Center & Department of Microbiology, School of Medicine) ;
  • Park, Raek-Il (Vestibulocochlear Research Center & Department of Microbiology, School of Medicine)
  • Published : 2008.04.25

Abstract

Dodam formula (Dodam) has been used for neurodegenerative disease in Oriental medicine. Dodam is capable of protecting diverse kinds of cells from damage caused by a variety of toxic stimuli. In the present study, we investigated the underlying protective mechanism of Dodam on rotenone-induced cytotoxicity in rat neuroblastoma Neuro-2A cells. Treatment with Neuro-2A cells with rotenone caused the loss of cell viability, and condensation and fragmentation of nuclei, which was associated with the elevation of ROS level, and lipid peroxidation, the increase in Bax/Bcl-2 ratio. Rotenone induced mitochondrial dysfunction characterized by mitochondrial membrane potential loss and cytochrome-c release. These phenotypes induced by rotenone were reversed by pretreatment with Dodam. Our results suggested that major features of rotenone-induced neurotoxicity are partially mediated by mitochondrial dysfunction and oxidative stress, and that Dodam markedly protects Neuro-2A cells from oxidative injury. These data indicated that Dodam might provide a useful therapeutic strategy in treatment of the neurodegenerative diseases caused by oxidative injuries.

Keywords

References

  1. Mattson, M.P., Duan, W., Perdersen, W.A., Culmsee, C. Neurodegenerative disorders and ischemic brain diseases. Apoptosis 6: 69-81, 2001 https://doi.org/10.1023/A:1009676112184
  2. Sun, A.Y., Chen, Y.M. Oxidative stress and neurodegenerative disorders. J Biomed. Sci. 5: 401-414, 1998 https://doi.org/10.1007/BF02255928
  3. Chan, P.H. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 21: 2-14, 2001 https://doi.org/10.1097/00004647-200101000-00002
  4. Love, S. Oxidative stress in brain ischemia. Brain Pathol. 9: 119-131, 1999 https://doi.org/10.1111/j.1750-3639.1999.tb00214.x
  5. Halliwell, B. Role of free radicals in neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18: 685-716, 2001 https://doi.org/10.2165/00002512-200118090-00004
  6. Di Monte, S.M., Sohn, Y.K., Wands, J.R. Correlation of p53- and Fas (CD95)-mediated apoptosis in Alzheimer's disease. J Neurol Sci. 152(1):73-83, 1997 https://doi.org/10.1016/S0022-510X(97)00131-7
  7. Jenner, P. Oxidative stress in Parkinson's disease. Ann Neurol. 53(Suppl. 3):S26-S38, 2003 https://doi.org/10.1002/ana.10483
  8. Tatton, W.G., Chalmers-Redman, R., Brown, D., Tatton, N. Apoptosis in Parkinson's disease: signals for neuronal degradation. Ann Neurol Suppl. 3: 61-70, 2003
  9. Napieralski, J.A., Raghupathi, R., McIntosh, T.K. The tumor-suppressor gene, p53, is induced in injured brain regions following experimental traumatic brain injury. Mol Brain Res. 71: 78-86, 1999 https://doi.org/10.1016/S0169-328X(99)00155-2
  10. Seaton, T.A., Cooper, K.M., Schapira, A.H. Free radical scavengers protect dopaminergic cell lines from apoptosis induced by complex I inhibitors. Brain Res. 28(777):110- 118, 1997
  11. Talpade, D.J., Greene, J.G., Higgins, D.S., Greenamyre, J.T. In vivo labeling of mitochondrial complex I (NADH: ubiquinone oxidoreductase) in rat brain using [(3)H]dihydrorotenone. J Neurochem. 75(6):2611-2621, 2000 https://doi.org/10.1046/j.1471-4159.2000.0752611.x
  12. Ian, A.T., Kim, Y.L., Albert, S.J., Wallace, D.C. Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblast, and transmitochondrial cell lines. Methods Enzymol. 264: 484-509, 1996 https://doi.org/10.1016/S0076-6879(96)64044-0
  13. Jimenez, M.F.M., Reus, M.I.S., Andres, D., Cascales, M., Benedi, J. Effect of fraxetin on antioxidant defense and stress proteins in human neuroblastoma cell model of rotenone neurotoxicity. Comparative study with myricetin and N-acetylcysteine. Toxicol & Appl Pharm. 209:214-225, 2005 https://doi.org/10.1016/j.taap.2005.04.009
  14. Armstrong, J.S., Yang, H., Duan, W., Whiteman, M. Cytochrome c (1) regulates the mitochondrial permeability transition by two distinct pathways. J Biol Chem. 279: 50420-50428, 2001 https://doi.org/10.1074/jbc.M408882200
  15. Isenberg, J.S., Klaunig, J.E. Role of the Mitochondrial Membrane Permeability Transition (MMPT) in Rotenone-Induced Apoptosis in Liver Cells. Toxicol. Sci. pp 340-351, 2000
  16. Gschwind, M., Huber, G. Apoptotic cell death induced by beta-amyloid 1-42 peptide is cell type dependent. J Neurochem. 65(1):292-300, 1995 https://doi.org/10.1046/j.1471-4159.1995.65010292.x
  17. Lannuzel, A., Michel, P.P., Ho¨glinger, G.U. The mitochondrial complex I inhibitor annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism. Neuroscience 121: 287-296, 2003 https://doi.org/10.1016/S0306-4522(03)00441-X
  18. O'Malley, K.L., Liu, J., Lotharius, J., Holtz, W. Targeted expression of BcL2 attenuates MPP+ but not 6-OHDA induced cell death in dopaminergic neurons. Neurobiol Dis. 14(1):43-51, 2003 https://doi.org/10.1016/S0969-9961(03)00013-5
  19. Ohkawa, H., Ohishi, N., Yagi, K. Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 95: 351-358, 1979 https://doi.org/10.1016/0003-2697(79)90738-3
  20. Ford, M.S., Maggirwar, S.B., Rybak, L.P., Whitworth, C., Ramkumar, V. Expression and function of adenosine receptors in the chinchilla cochlea. Hear Res. 105: 130-140, 1997 https://doi.org/10.1016/S0378-5955(96)00204-3
  21. Zhang, J.G., Nicholls-Grzemski, F.A., Tirmenstein, M.A., Fariss, M.W. Vitamin E succinate protects hepatocytes against the toxic effect of reactive oxygen species generated at mitochondrial complex I and II by alkylating agents. Chemico-Biol Interactions 138: 67-284, 2001
  22. Cory, S., Adams, J.M. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2(9):647-56, 2002 https://doi.org/10.1038/nrc883
  23. Adams, J.D., Klaidman, L.K., Leung, A.C. MPP+ and MPDP+ induced oxygen radical formation with mitochondrial enzymes. Free Radic Biol Med. 15: 181-186, 2001
  24. Ke, C., Xiaoling, L., Keyi, X., Ven, M. Role of oxidative stress in neurodegenertion: recent developments in assay methods for oxidative stress and naturaceutical antioxidants. Progress in Neuro-Psych. & Biological Psychiaty. 28: 771-799, 2004 https://doi.org/10.1016/j.pnpbp.2004.05.023
  25. Lenaz, G. Role of mitochondria in oxidative stress and aging. Biochim Biophys Acta 1366: 53-67, 1998 https://doi.org/10.1016/S0005-2728(98)00120-0
  26. Cassarino, D.S., Bennett, J.P. An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. Brain Res. Rev. 29: 1-2, 1999 https://doi.org/10.1016/S0165-0173(98)00046-0
  27. Beal, M.F. Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci. 23: 298-304, 2000 https://doi.org/10.1016/S0166-2236(00)01584-8
  28. Orth, M., Shapira, A.H. Mitochondria and degenerative disorders. Am J Med Genet. 106: 27-36, 2001 https://doi.org/10.1002/ajmg.1425
  29. Betarbet, R., Sherer, T.B., Sherer, T.B., Di Monte, D.A., Greenamyre, J.T. Mechanistic approaches to Parkinson's disease pathogenesis. Brain Pathol. 12(4):499-510, 2002 https://doi.org/10.1111/j.1750-3639.2002.tb00468.x
  30. Chance, B., Sies, H., Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59: 527-605, 1979 https://doi.org/10.1152/physrev.1979.59.3.527
  31. Turrens, J.F. Superoxide production by the mitochondrial respiratory chain. Biosci Rep. 17: 3-8, 1997 https://doi.org/10.1023/A:1027374931887
  32. Nicholls, D.G., Budd, S.L. Mitochondria and neuronal survival. Physiol Rev. 80: 315-360, 2000 https://doi.org/10.1152/physrev.2000.80.1.315
  33. Li, N., Ragheb, K.E., Lawler, G., Sturgis, J., Rajwa, B., Melendez, J.A., Robinson, J.P. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol. Chem. 278: 8516-8525, 2003 https://doi.org/10.1074/jbc.M210432200