인삼모상근의 생장과 Ginsenoside 생산에 미치는 NaCl의 영향

The Effect of NaCI on the Growth and Ginsenoside Production from Ginseng Hairy Root

  • 김유진 (경희대학교 생명공학원 인삼유전자원소재은행) ;
  • 심주선 (경희대학교 생명공학원 인삼유전자원소재은행) ;
  • 정대영 (경희대학교 생명공학원 인삼유전자원소재은행) ;
  • 이정혜 (경희대학교 생명공학원 인삼유전자원소재은행) ;
  • 인준교 ((주)바이오피아) ;
  • 이범수 ((주)바이오피아) ;
  • 양덕춘 (경희대학교 생명공학원 인삼유전자원소재은행)
  • Kim, Yu-Jin (Ginseng Genetic Resource Bank, Graduate School of biotechnology, Kyung Hee University) ;
  • Sim, Ju-Sun (Ginseng Genetic Resource Bank, Graduate School of biotechnology, Kyung Hee University) ;
  • ;
  • Lee, Chung-Hyae (Ginseng Genetic Resource Bank, Graduate School of biotechnology, Kyung Hee University) ;
  • In, Jun-Gyo (Biopia. CO. Ltd) ;
  • Lee, Bum-Soo (Biopia. CO. Ltd) ;
  • Yang, Deok-Chun (Ginseng Genetic Resource Bank, Graduate School of biotechnology, Kyung Hee University)
  • 발행 : 2008.04.30

초록

인삼의 생장에서 염류의 집적은 우량 인삼의 생산에 많은 장애요인이 되고 있다. 본 연구에서는 순계 분리된 인삼의 우수 계통으로부터 NaCl 처리에 따른 생장율 조사와 ginsenoside의 생산에 미치는 영향을 조사하였다. 선발된 모상근(KGHR-8)으로부터 ginsenosides의 함량에 미치는 NaCl의 최적 농도를 조사하기 위하여 30일간 배양한 결과 NaCl의 농도가 증가함에 따라 모상근의 생장은 감소하였지만, total ginsenoside의 함량은 0.24M NaCl 처리구에서 높은 증가를 가져왔으며 특히 광을 조사하여 배양한 결과 높게 검출되었다. 0.24 M NaCl 농도로 광상태하에서 함량은 61.7% 증가하는 양상을 나타내었다. (Table 1). 또한 모상근의 생장을 최적 상태로 설정하기 위해 two step culture 방법을 조사한 결과, 0.05M, 0.1M NaCl 처리시 모상근의 생장율은 각각 약 62%, 76% 감소한 반면, ginsenoside의 함량은 29%, 48% 각각 향상되었다. 모상근은 방어기작의 일환으로 NaCl을 elicitor로 인지하고 2차대사산물인 사포닌의 생산에 영향을 미치는 것으로 확인되었다.

Korean ginseng (Panax ginseng C.A. Meyer) is very difficult to obtain stable production of qualified ginseng roots because of variable stresses in soil environments. High salt concentrations in the ginseng nursery soil environment of Korea is one of important reducing factors for the stable production of quality ginseng. These studies were accomplished to identify the growth rate and production of ginsenoside from ginseng hairy root against NaCI. In the MS liquid culture, the highest contents and productivity of ginsenosides were appeared at 4 week after onset of the treatment of 0.1 M NaCI. And 0.24 M NaCI was more effective on the growth of ginseng hairy root under light condition than dark condition. Plants generally produce secondary metabolites in nature as a defense mechanism against pathogenic and insect attack. In this study, NaCI acts as a kind of stress as well as elicitor for production of ginsenosides.

키워드

참고문헌

  1. Ando T, Tanaka O, Shibata S (1971) Chemical studies on the oriental plant drugs. Comparative studies on the saponins and sapoginins of ginseng and related crude drugs. Syoyakugaku Zasshi. 25:28-32
  2. Arya S, Liu JR, Eriksson T (1991) Plant regeneration from protoplasts of Panax ginseng (C.A. Meyer) through somatic embryogenesis. Plant Cell Rep. 10:277-281
  3. Asins MJ, Breto MP, Cambra M, Carbonell EA (1993) : Salt tolerance in Lycopersicon species. I. Character definition and changes in gene expression. Theor. Appl. Genet. 86:737-743
  4. Bhagwath SG, Hjorts MA (2000) Statigical analysis of elicitation strategies for thiarubrine: A production in hairy root cultures of Ambrosia artemisiifolia. J. Biotechnol. 80: 159-167 https://doi.org/10.1016/S0168-1656(00)00256-X
  5. Boyer JS (1982) Plant productivity and environment. Science 218:443-448 https://doi.org/10.1126/science.218.4571.443
  6. Brachet J, Cosson L (1986) Changes in the total alkaloids content of Datura innoxia Mill subjected to salt stress. J. Exp. Bot. 37:650-656 https://doi.org/10.1093/jxb/37.5.650
  7. Butenko RG, Grushvilsky RV, Stepyan LI (1968) Organogenesis and embryogenesis in a tissue culture(Panax ginseng) and other Panax L. Species. Bot. Zh. 53(7):906-911
  8. Chae YA, Heu JG, Lee JW (1988) In vitro breeding for salttolerance rice: Callus growth in stepwise increase of saline stress and the nature of salt tolerance. Korea J. Breeding. 21:46-50
  9. Croughan SF, Stavarek SJ, Rains DW (1978) Selection of a NaCl tolerant line of cultured alfalfa cell. Crop Sci. 18:959-963 https://doi.org/10.2135/cropsci1978.0011183X001800060012x
  10. Dicosmo F, Misawa M (1985) Eliciting secondary metabolism in plnat cell cultures. Trends Biotechnol. 3:318-322 https://doi.org/10.1016/0167-7799(85)90036-8
  11. Frischlnecht PM, Baumann TW (1985) Stress-induced formation of purine alkaloids in plant tissue cultures of Coffea arabica. Phytochem. 24:2255-2257 https://doi.org/10.1016/S0031-9422(00)83020-4
  12. Hans DV, Masfield JW, Banley JA, Farmer EF (1994) Two classes of plant antibiotics: phytoalexins versus phytoantipicins. The Plant Cell. 6:1191-1192 https://doi.org/10.2307/3869817
  13. Hiraga H, Oshima T, Ishida M, Kajiyama G (1996) Angiotensin I-converting enzyme gene polymorphism and salt sensitivity in essential hypertension. Hypertension. 27:69-572
  14. Hong SJ, Lee YW, Joo CN (1987) Biosynthesis of saponins in Panax ginseng. Kor. J. Ginseng Sci. 11:136-144
  15. Huraki C, Taishi K, Yamashita K, Kagawa S (1993) Detection of methicillin-resistant Staphylococcus aureus using PCR and non-radioactive DNA proves. Rinsho Byori. 41:1159-1166
  16. In JG, Yang DC (2005) Transformation of Korean ginseng (Panax ginseng C.A. Meyer) with salt tolerance SAL1 gene. Kor. J. Med. Crop Sci. 13:57-62
  17. In JG, Park DS, Lee BS, Lee TH, Kim SY, Rho YD, Cho DH, Jin CW, Yang DC (2006) Effect of potassium phosphate on growth and ginsenosides biosynthesis from ginseng hairy root. Kor. J. Med. Crop Sci. 14(6):371-375
  18. Jeong GT, Park DH (2005) Enhancement of growth and secondary metabolite biosynthesis: effect of elicitors derived from plants and insects. Biotech. Bioprocess Eng. 10:73-77 https://doi.org/10.1007/BF02931186
  19. Jeong GT, Park DH (2006) Enhanced secondary metabolite biosynthesis by elicitation in transformed plant root system: effect of abiotic elicitors. Appl. Biochem. Biotechnol. 129-132:436-446
  20. Jolley KA, Rapaport E, Hough DW, Danson MJ (1996) Dihydrolipoamide dehydrogenase from the halophilicarchaeon Haloferax volcanii : homology over expression of the cloned gene. J. Bacteriol. 178:3044-3048 https://doi.org/10.1128/jb.178.11.3044-3048.1996
  21. Joo CN, Kwak HS, Lee HB, Hwang B (2000) Biosynthesis of saponins in Panax ginseng C. A. Meyer. I. Probable sites of the biosynthesis of ginseng saponin from acetate. Kor. J. Ginseng Sci. 7:108-114
  22. Jung G, Tepfer D (1987) Use of genetic transformation by the Ri T-DNA of Agrobacterium rhizogenes to stimulate bio-mass and tropane alkaloid production in Atopa belladonna and Calystegia Sepium roots grown in vitro. Plant Sci. 50:145-151 https://doi.org/10.1016/0168-9452(87)90151-8
  23. Jung HY, Kang SM, Kang YM, Kim YD, Yang JK, Chung YG, Choi MS (2003) Selection of optimal biotic elicitor on tropane alkaloid production of hairy root in Scopolia parviflora Nakai. Kor. J. Med. Crop Sci. 11(5):358-363
  24. Kent FM, Hanson AD (1992) Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Plant Mol. Biol. 18:1-11 https://doi.org/10.1007/BF00018451
  25. Leon DD, Martha JL, Sanjaya R, Abdul MK (1995) Rapid in vitro screening of some salt tolerant bread wheats. Cereal Research Communications. 23(4):383-389
  26. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiol. 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  27. Nabors MW, Daniels A, Nadolny L, Brown C (1975) Sodium chloride tolerant lines of tobacco cells. Plant Sci. Lett. 4:155-159 https://doi.org/10.1016/0304-4211(75)90089-9
  28. Park HJ, Oh SY, Choi KH, Meang SJ, Yoon ES, Yand DA (2000) Effect of jasmonic and methyl jasmonate on the production of ginsenosides in the hairy roots of Korean ginseng (Panax ginseng C.A. Meyer). J. Ginseng Res. 24:74-78
  29. Ryu JH, Kwon TH, Choi SY (1991) Tissue culture for the selection salt tolerant lines in Alfalfa (Medicago sativa L.) Kor. J. Plant Tiss. Cult. 4:239-246
  30. Sim SJ, Chang HN, Liu JR, Jung KH (1994) Production and secretion of indole alkaloids in hairy root cultures of Catharan thus roseus: eects of in situ adsorption, fungal elicitation and permeabilization. J. Ferment. Bioeng. 78:229-234 https://doi.org/10.1016/0922-338X(94)90295-X
  31. Smith JI, Smat NJ, Kurz WGW, Misawa M (1987) The use of organic compounds to increase the accumulation of indole alkaloids in Catharanthus reseus (L.) G. Cell suspension cultures. J. Exp. Bot. 38:1501-1506 https://doi.org/10.1093/jxb/38.9.1501
  32. Vasil V, Vasil IK (1981) Sormatic embryogenesis and plant regeneration from suspended cultures of Pearl millet. Ann. Sot. 47:669-678
  33. Yang DC, Kim YH, Yang DC, Min BH, Shin SL, Choi KT (1998) Selection of active grow hairy root lines in ginseng. Kor. J. Plant Tiss. Cult. 25(6):525-530
  34. Yoon YS, Kim MS, Yang DC (2004) Selection of ginseng superior lines tolerant to salt stress through zygotic embryo culture. Kor. J. Plant Res. 17(3):257-264
  35. You BS, Byun SJ (2001) Characterization of batch culture and effect of various elicitors on ginsenoside production in suspension cultures of Panax ginseng C.A. Meyer. Kor. J. Biotechnol. Bioeng. 16:620-625
  36. 남기열 (1991) 토양염류 농도가 고려인삼의 생육 및 수량에 미치는 영향. 박사학위논문, 충남대학교 대학원
  37. 남기열 (1996) 최신고려인삼-성분 및 효능편. 한국인삼연초연구원. 천일인쇄사. p. 13-44
  38. 목성균, 김명수, 홍순근, 이태수 (1987) 인삼의 생리장해에 관한 연구. 한국인삼연초연구소. 인삼연구보고서. p. 353-493
  39. 배효원 (1979) 고려인삼연구소. 고려인삼. 238
  40. 송기준, 이일호, 이명구 (1985) 인삼토양의 이화학성개량연구. 인삼연초연구소. 인삼연구보고서(재배분야). p. 681-783
  41. 양덕춘, 이은경, 권우생 (2003) 인삼 염류내성 계통의 선발을 위한 배배양 배지조건. 한국약용작물학회지. 11:161-166
  42. 오승용, 박효진, 최경화, 맹성주, 양계진, 양덕춘 (2000) Chitin과 Chitosan 처리에 의한 인삼모상근으로부터 Ginsenosides 생산. 고려인삼학회지. 24(2):68-73
  43. 윤영상, 배창휴, 송원섭, 윤재호, 양덕춘 (2005) 염류내성관련 유전자 Betaine Aldehyde Dehydrogenase Gene의 인삼 체세포 배발생을 통한 형질전환. Kor. J. Plant Res. 18(1):15-21
  44. 이태수, 목성균, 천성기, 최정 (1995) 적변인삼의 화학적 성분에 관한 연구. 고려인삼학회지. 19:77-83
  45. 인준교, 박동식, 이범수, 이태후, 김세영, 노영덕, 조동하, 김성무, 양덕춘 (2006) 광 및 UV 조사가 인삼 모상근의 생장 및 사포닌 생합성에 미치는 영향. 한국약용작물학회지. 14(6):360-366
  46. 정현숙, 황백, 유석 (1982) 벼 callus의 유도와 성장에 미치는 염의 영향. Kor. J. Plant Tiss. Cult. 9(1):35-42