References
- Z. Gajic and M.T. Lim, Optimal Control Of Singularly Perturbed Linear Systems And Applications, Marcel Dekker, New York, 2001
- H. R. Karimi, P. J. Maralani, B. Moshiri, and B. Lohmann, 'Numerically efficient approximations to the optimal control of linear singularly perturbed systems based on Haar wavelets,' Int. J. of Computer Mathematics, vol. 82, pp. 495-507, 2005 https://doi.org/10.1080/00207160512331323407
- R. S. Stankovic and B. J. Falkowski, 'The Haar wavelet transform: its status and achievements,' Computers and Electrical Engineering, vol. 29, no. 1, pp. 25-44, 2003 https://doi.org/10.1016/S0045-7906(01)00011-8
- C. F. Chen and C. H. Hsiao, 'Haar wavelet method for solving lumped and distributed-parameter systems,' IEE Proc. Control Theory Appl. vol. 144, pp. 87-94, 1997 https://doi.org/10.1049/ip-cta:19970702
- M. Ohkita and Y. Kobayashi, 'An application of rationalized Haar functions to solution of linear differential equations.' IEEE Trans. Circuits Systems I. Fund. Theory Appl. vol. 9, pp. 853-862, 1986
- C. H. Hsiao and W. J. Wang, 'State analysis and parameter estimation of bilinear systems via Haar wavelets,' IEEE Trans. Circuits Systems I. Fundam. Theory Appl. vol. 47, pp. 246-250, 2000 https://doi.org/10.1109/81.828579
- B. S. Kim, I. J. Shim, B. K. Choi, and J. H. Jeong, 'Wavelet based control for linear systems via reduced order Sylvester equation,' The 3rd Int. Conf. on Cooling and Heating Technologies, pp. 239-244, 2007
- B. S. Kim and I. J. Shim 'Haar wavelet-based control for HVAC systems,' 2007 Int. Sym. On Advanced Intelligent Systems, pp. 647-650, 2007
- C. H. Hsiao, 'Solution of variational problems via Haar orthonormal wavelet direct method,' Int. J. Comput. Math, vol. 81, pp. 871-887, 2004 https://doi.org/10.1080/00207160410001712323
- A. Haar, 'Zur Theorie der orthogonaler Funktionensysteme,' Math. Ann. vol. 69, pp. 331-371, 1910 https://doi.org/10.1007/BF01456326
- K. W. Chang, 'Singular perturbations of a general boundary value problems,' SIAM J. Math. Anal., vol. 3, pp. 520-526, 1972 https://doi.org/10.1137/0503050
- J. Brewer, 'Kronecker products and matrix calculus in system theory,' IEEE Trans. on Circuits and Systems, vol. 25, pp. 772-781, 1978 https://doi.org/10.1109/TCS.1978.1084534
- F. Ding and T.W. Chen, 'Gradient based iterative algorithms for solving a class of matrix equations,' IEEE Tran. Automa. Contr., vol. 50, pp. 1216-1221, 2005 https://doi.org/10.1109/TAC.2005.852558
- G. H. Golub, S. Nash, and C. Van Loan, 'A Hessenberg-Schur Method for the Problem AX + XB = C,' IEEE Trans. Automa. Contr., vol. 24, pp. 909-913, 1979 https://doi.org/10.1109/TAC.1979.1102170
- G. Freiling, 'A survey of nonsymmetric Riccati equations,' Linear Algebra Appl., pp. 243-270, 2002
- Y. Arkun and S. Ramakrishnan, 'Bounds on the optimum quadratic cost of structure-constrained controllers,' IEEE Tran. Automa. Contr., vol. 28, pp. 924- 927, 1983 https://doi.org/10.1109/TAC.1983.1103343