Genetic Diversity of an Endangered Fish, Iksookimia choii (Cypriniformes), from Korea as Assessed by Amplified Fragment Length Polymorphism

AFLP 분석에 의한 멸종위기어류 미호종개, Iksookimia choii의 유전 다양성

  • Lee, Il-Ro (Department of Marine Biotechnology, Soonchunhyang University) ;
  • Lee, Yoon-A (Department of Marine Biotechnology, Soonchunhyang University) ;
  • Shin, Hyun-Chur (Department of Marine Biology, Soonchunhyang University) ;
  • Nam, Yoon-Kwon (Department of Aquaculture, Pukyong National University) ;
  • Kim, Woo-Jin (Biotechnology Research Institute, National Fisheries Research and Development Institute) ;
  • Bang, In-Chul (Department of Marine Biotechnology, Soonchunhyang University)
  • 이일로 (순천향대학교 해양생명공학과) ;
  • 이윤아 (순천향대학교 해양생명공학과) ;
  • 신현철 (순천향대학교 생명과학과) ;
  • 남윤권 (부경대학교 양식학과) ;
  • 김우진 (국립수산과학원 생명공학연구소) ;
  • 방인철 (순천향대학교 해양생명공학과)
  • Published : 2008.03.31

Abstract

Genetic diversity and population genetic structure within or among three stream populations (Gab, Baekgok and Ji streams) of Korean endangered natural monument fish, Iksookimia choii, were assessed by amplified fragment length polymorphism (AFLP). AFLP analysis using three primer combinations generated 104 to 106 AFLP bands, and percent polymorphic bands were similar in those three populations ranging 21.5 to 24.5%. Heterozygosity and genetic diversity within or among populations were quite low for all of these populations with average values ranging from 0.067 to 0.084 and from 0.076 to 0.087, respectively. Analyses of pairwise distance and genetic similarity among three populations of I. choii also revealed the similar results with very low genetic differentiation one another. Although pairwise Fst values were very low, our data clearly indicated distinct genetic differentiation among the three populations. This is the first report concerning the genetic diversity and differentiation of this species, and provides basic genetic information that should facilitate attempts to conserve this species.

우리나라 멸종위기종 미호종개 3집단(갑천, 백곡천, 지천)의 유전 다양성 및 유전적 구조를 AFLP분석을 통해 조사하였다. 3종의 primer조합형을 이용한 AFLP분석에서 각 집단으로부터 106, 107, 104개의 밴드가 생성되었으며, 집단 내 다형 밴드의 출현 빈도는 3개 집단에서 $21.5\sim24.5%$로 유사하게 나타났고, 이형접합율$(0.067\sim0.084)$및 유전적 다양도$(0.076\sim0.087)$는 매우 낮은 값을 보였다. 집단간 유전적 거리 및 유전적 상동성 분석 역시 유사한 결과를 나타내어 본 연구에서 분석한 미호종개 3개 집단은 유전적으로 매우 밀접한 근연관계를 나타내었다. 비록 pairwise Fst 값은 매우 낮았지만 3집단은 유전적 분화가 진행되고 있었다. 본 연구는 미호종개의 유전적 다양성 및 분화에 대해 처음으로 보고된 연구이며, 미호종개의 보존을 위한 유전적 기초 정보를 제공해 준다.

Keywords

References

  1. 이윤아, 2005. 멸종위기에 처한 어름치 (Hemibarbus mylodon) 의 유전 다양성 분석. 2005학년도 순천향대학교 일반 대학원 박사학위 청구논문
  2. 홍영표, 2004. 멸종위기종 미호종개의 현황과 보존. 2004년 한 국어류학회 추계학술 대회 요약집. p. 59-72
  3. Asahida, T., T. Kobayashi, K. Saitoh and I. Nakayama. 1996. Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentration of urea. Fish. Sci. 62: 727-730 https://doi.org/10.2331/fishsci.62.727
  4. Bonin, A., D. Ehrich and A. Manel. 2007. Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol. Ecol. 16: 3737-3758 https://doi.org/10.1111/j.1365-294X.2007.03435.x
  5. Changeux, T. and D. Pont. 1995. Current status of the riverine fishes of the French Mediterranean basin. Biol. Conserv. 72: 137-158 https://doi.org/10.1016/0006-3207(94)00077-4
  6. Chen, D., C. Zhang, C. Lu, Y. Chang and J. Chang. 2005. Amplified fragment length polymorphism analysis to identify the genetic structure of the Gymnocypris przewalskii (Kessler, 1987) population from the Qinghai Basin, China. J. Appl. Ichthyol. 21: 178-183 https://doi.org/10.1111/j.1439-0426.2005.00631.x
  7. Danancher, D., J.I. Izquierdo and E. Garcia-Vazquez. 2008. Microsatellite analysis of relatedness structure in young of the year of the endangered Zingel asper (Percidae) and implications for conservation. Freshw. Biol. 53: 546-557 https://doi.org/10.1111/j.1365-2427.2007.01919.x
  8. Drummond, R.S.M., D.J. Keeling, T.E. Richardson, R.C. Gardner and S.D. Wright. 2000. Genetic analysis and conservation of 31 surviving individuals of a rare New Zealand tree, Metrosideros bartlettii (Myrtaceae). Mol. Ecol. 9: 1149-1157 https://doi.org/10.1046/j.1365-294x.2000.00989.x
  9. Frankham, R., J.D. Ballou and D.A. Briscoe. 2002. Introduction to conservation genetics. Cambridge, Univ. Press, Cambridge
  10. Jones, C.J., K.J. Edwards, S. Castaglione, M.O. Winfield, F. Sala, C. Van de Wiel, G. Bredemeijer, B. Vosman, M. Matthes, A. Daly, R. Brettschneider, P. Bettini, M. Buiatti, E. Maesti, A. Malcevschi, N. Marmiroli, R. Aert, G. Volckaert, J. Rueda, R. Linacero, A. Vazquez and R. Aert. 1997. Reproducibility testing RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol. Breed. 3: 381-390 https://doi.org/10.1023/A:1009612517139
  11. Kawamura, K., M. Kubota, M. Furukawa and Y. Harada. 2007. The genetic structure of endangered indigenous populations of the amago salmon, Oncorhynchus masou ishikawae, in Japan. Conserv. Genet. 8: 1163-1176 https://doi.org/10.1007/s10592-006-9271-1
  12. Kim, I.-S. and Y.-M. Son. 1984. Cobitis choii, a new cobitid fish from Korea. Kor. J. Zool. 27: 49-55
  13. Kim, W.J., Y.-A. Lee and I.-C. Bang. 2007. Isolation and characterization of polymorphic microsatellite markers for the endangered Korean freshwater fish Hemibarbus mylodon. Mol. Ecol. Notes 7: 516-518 https://doi.org/10.1111/j.1471-8286.2006.01639.x
  14. Krauss, S.L. 2000. Accurate gene diversity estimates from amplified fragment length polymorphism (AFLP) markers. Mol. Ecol. 9: 1241-1245 https://doi.org/10.1046/j.1365-294x.2000.01001.x
  15. Li, Z., J. Li, Q. Wang, Y. He and P. Liu. 2006. The effects of selective breeding on the genetic structure of shrimp Fenneropenaeus chinensis populations. Aquaculture 258: 278-282 https://doi.org/10.1016/j.aquaculture.2006.04.040
  16. Mendelson, T.C. and K.L. Shaw. 2005. Use of AFLP markers in surveys of arthropod biodiversity. Methods Enzymol. 395: 161-177 https://doi.org/10.1016/S0076-6879(05)95011-8
  17. Miller, M. 1997. Tools for population genetic analysis (TFPGA) 1.3: a windows program for the analysis of allozyme and molecular population genetic data. Computer software distributed by author. http://www.Marksgenetic software.net /tfpga.htm
  18. Mohammadi, S.A. and B.M. Prasanna. 2003. Analysis of genetic diversity in crop plants salient statistical tools and considerations. Crop Sci. 43: 1235-1248 https://doi.org/10.2135/cropsci2003.1235
  19. Nalbant, T.T. 1993. Some problems in the systemmatics of genus Cobitis and its relatives (Pisces: Ostariophysi, Cobitidae). Rev. Roum. Biol, Biol. Anim. 38: 101-110
  20. Nei, M. and W.H. Li. 1979. Mathematical model for studying genetical variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 70: 3321-3323
  21. Nybom, H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 13: 1143-1155 https://doi.org/10.1111/j.1365-294X.2004.02141.x
  22. Palacios, C. and F. Gonzalez-Candelas. 1999. AFLP analysis of the critically endangered Limonium cavanillesii (Plumbaginaceae). J. Hered. 90: 485-489 https://doi.org/10.1093/jhered/90.4.485
  23. Penczak, T. and A. Kruk. 2000. Threatened obligatory riverine fishes in human-modified polish rivers. Ecol. Freshw. Fish. 9: 109-117 https://doi.org/10.1034/j.1600-0633.2000.90113.x
  24. Ricciardi, A. and J.B. Rasmussen. 1999. Extinction rates of north American freshwater fauna. Conserv. Biol. 13: 1220-1222 https://doi.org/10.1046/j.1523-1739.1999.98380.x
  25. Schmidt, K. and K. Jenssen. 2000. Genetic structure and AFLP variation of remnant populations in the rare plant Pedicularis palustris (Scrophulariaceae) and its relation to population size and reproduction components. Am. J. Bot. 87: 678-689 https://doi.org/10.2307/2656854
  26. Singh, M., K. Chabane, J. Valkoun and T. Blake. 2006. Optimum sample size for estimating gene diversity in wild wheat using AFLP markers. Gen. Res. Crop Evol. 53: 23-33 https://doi.org/10.1007/s10722-004-0597-6
  27. Stefan, S., D. Roessli and L. Excoffier. 2000. Arlequin ver. 2.000: A software for population genetics data analysis. Genetics and Biometry Laboratory, Univ. of Geneva
  28. Stow, A., K. Zenger, D. Briscoe, M. Gillings,V. Peddemors, N. Otway and R. Harcourt. 2006. Isolation and genetic diversity of endangered grey nurse shark (Carcharias taurus) populations. Biol. Lett. 2: 308-311 https://doi.org/10.1098/rsbl.2006.0441
  29. Taylor, A.C. 2003. Assessing the consequences of inbreeding for population fitness: past challenges and future prospects. In: Reproductive Science and Intezgrated Conservation (ed. W.V. Holt, A.R. Pickard, J. Rodger & D.E. Wildt). p. 67-81. Cambridge Univ. Press, Cambridge
  30. Travis, S.E., J. Maschinski and P. Keim. 1996. An analysis of genetic variation in Astragalus cremnophylax var. cremnophylax, a critically endangered plant, using AFLP markers. Mol. Ecol. 5: 735-745 https://doi.org/10.1111/j.1365-294X.1996.tb00370.x
  31. Vos, P., R. Hodgers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper and M. Zabeau. 1995. AFLP, a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414 https://doi.org/10.1093/nar/23.21.4407
  32. Ward, R.D., K.E. Jorstad and G.B. Maguire. 2003. Microsatellite diversity in rainbow trout (Oncorhynchus mykiss) introduced to Western Australia. Aquaculture 219: 169-179 https://doi.org/10.1016/S0044-8486(02)00569-0
  33. Wright, S. 1978. Evolution and the genetics of populations; Vol 4: Variability within and among natural populations. Univ. of Chicago Press, Chicago