DOI QR코드

DOI QR Code

Aspects of Dependence in Lomax Distribution

  • Asadian, N. (Department of Statistics, Faculty of Mathematics Sciences, Ferdowsi University of Mashhad) ;
  • Amini, M. (Department of Statistics, Faculty of Mathematics Sciences, Ferdowsi University of Mashhad) ;
  • Bozorgnia, A. (Department of Statistics, Faculty of Mathematics Sciences, Ferdowsi University of Mashhad)
  • Published : 2008.03.30

Abstract

In this paper we study some positive dependence concepts, introduced by Caperaa and Genest (1990) and Shaked (1977b), for bivariate lomax distribution. In particular, we obtain some measures of association for this distribution and derive the tail-dependence coefficients by using copula function. We also compare Spearman's $\rho_s$ with Kendall's $\tau$ for bivariate lomax distribution.

Keywords

References

  1. Arnold, B. C. and Zahedi, H. (1988). On multivariate mean remaining life functions. Journal of Multivariate Analysis, 25, 1-9 https://doi.org/10.1016/0047-259X(88)90148-0
  2. Barlow, R. E. and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing: Probability Models. Holt, Rinehart and Winston, New York
  3. Basu, A. P. (1971). Bivariate failure rate. Journal of the American Statistical Association, 66, 103-104 https://doi.org/10.2307/2284857
  4. Brindley, Jr., E. C. and Thompson, Jr., W. A. (1972). Dependence and aging aspects of multivariate survival. Journal of the American Statistical Association, 67, 822-830 https://doi.org/10.2307/2284644
  5. Caperaa, P. and Genest, C. (1990). Concepts de dendance et ordres stochastiques pour des lois bidimensionnelles. The Canadian Journal of Statistics, 18, 315-326 https://doi.org/10.2307/3315837
  6. Clayton, D. G. (1978). A model for association in bivariate life tables and its appli- cation in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65, 141-151 https://doi.org/10.1093/biomet/65.1.141
  7. Drouet, Mari, D. and Kotz, S. (2001). Correlation and Dependence. Imperial College Press, London
  8. Frahm, G. (2006). On the extremal dependence coefficient of multivariate distributions. Statistics & Probability Letters, 76, 1470-1481 https://doi.org/10.1016/j.spl.2006.03.006
  9. Fredricks, G. A. and Nelsen, R. B. (2007). On the relationship between Spearman's rho and Kendall's tau for pairs of continuous random variables. Journal of Statistical Planning and Inference, 137, 2143-2150 https://doi.org/10.1016/j.jspi.2006.06.045
  10. Gupta, R. C. (2003). On some association measures in bivariate distributions and their relationships. Journal of Statistical Planning and Inference, 117, 83-98 https://doi.org/10.1016/S0378-3758(02)00367-1
  11. Harris, R. (1970). A multivariate definition for increasing hazard rate distribution functions. The Annals of Mathematical Statistis, 41, 713-717 https://doi.org/10.1214/aoms/1177697121
  12. Johnson N. L. and Kotz, S. (1975). A vector valued multivariate hazard rate. Journal of Multivariate Analysis, 5, 53-66 https://doi.org/10.1016/0047-259X(75)90055-X
  13. Karlin, S. (1968). Total Positivity. Stanford University Press, California
  14. Lehmann, E. L. (1966). Some concepts of dependence. The Annals of Mathematical Statistis, 37, 1137-1153 https://doi.org/10.1214/aoms/1177699260
  15. Lindley, D.V. and Singpurwalla, N.D. (1986). Multivariate distributions for the life lengths of component of a system sharing a common environment. Journal of Applied Probability, 23, 418-431 https://doi.org/10.2307/3214184
  16. Nadarjah, S. (2005). Sums, products and ratios for the bivariate lomax distribution. Computational Statistics & Data Analysis, 49, 109-129 https://doi.org/10.1016/j.csda.2004.05.003
  17. Nayak, T. K. (1987). Multivariate lomax distribution: Properties and usefulness in reliability theory. Journal of Applied Probability, 24, 170-177 https://doi.org/10.2307/3214068
  18. Nelsen, R. B. (1999). An Intruduction to Copulas. Springer-Verlag Berlin and Heidel- berg GmbH & Co. KG, New-York
  19. Oakes, D. (1989). Bivariate survival models induced by frailties. Journal of the American Statistical Association, 84, 487-493 https://doi.org/10.2307/2289934
  20. Shaked, M. (1977a). A concept of positive dependence for exchangeable random variables. Annals of Statistics, 5, 505-515 https://doi.org/10.1214/aos/1176343847
  21. Shaked, M. (1977b). A family of concept of dependence for bivariate distributions. Journal of the American Statistical Association, 72, 642-650 https://doi.org/10.2307/2286232
  22. Winterbottom, A. (1984). The interval estimation of system reliability from component test data. Operation Research, 32, 628-640 https://doi.org/10.1287/opre.32.3.628

Cited by

  1. Aspects of Dependence in Generalized Farlie-Gumbel-Morgenstern Distributions vol.40, pp.8, 2011, https://doi.org/10.1080/03610918.2011.568149