DOI QR코드

DOI QR Code

Characteristics of Lactic Acid Bacteria Isolated from Kefir Made of Goat Milk

산양유 Kefir 발효물에서 분리한 유산균의 특성

  • Lim, Young-Soon (Department of Applied Biology and Chemistry, Konkuk University) ;
  • Kim, Soo-Young (Department of Biological Science, Konkuk University) ;
  • Lee, Si-Kyung (Department of Applied Biology and Chemistry, Konkuk University)
  • 임영순 (건국대학교 응용생물화학과) ;
  • 김수영 (건국대학교 생명과학과) ;
  • 이시경 (건국대학교 응용생물화학과)
  • Published : 2008.03.30

Abstract

Two strains of pure lactic acid bacteria capable of forming both acid and slime were isolated from the kefir made of goat milk. The isolated strains observed by morphological and physiological properties, and their 16S rDNA partial sequence were identified as Streptococcus salivarius subsp. thermophilus(LFG-1) and Lactococcus lactis subsp. lacits(LFG-2) with over 99% homology. The optimum temperature of Str. salivarius subs. thermophilus LFG-1 for growth was $40-45^{\circ}C$, and its generation time was 40.6 minutes. The final pH of cultured broth by Str. salivarius subsp. thermophilus LFG-1 and the commercial strain Str. thermophilus Body-1 for 24hr at $37^{\circ}C$ were 4.30 and 4.55, respectively. The coagulative activity of Str. salivarius subsp. thermophilus LFG-1 was almost as strong as that of commercial strain Str. thermophilus Body-1. However, the LFG-2 strain showed lower coagulative activity than Str. thermophilus Body-1. The survival rate of lactic acid bacteria were between 22-29% in 0.3% bile extract. At pH 1.0 all of the bacteria were killed, and most of lactic acid bacteria died against pH 3.0. However, all lactic acid bacteria survived well at pH 4.5.

Kefir 분말제품으로부터 점질물 생성에 관여하는 유산균을 분리 동정하였으며, 분리균의 배양 특성을 조사하였다. 국산 산양유 kefir제품으로부터 순수 분리된 우수한 점질 생성특성을 갖는 2개 균주를 형태 및 생리학적 특성과 16S rDNA염기서열을 기초로 분석한 결과, 각 균주는 99% 이상의 상동성으로 Str. salivarius subsp. thermophilus(LFG-1)과 Lc. lactis subsp. lactis(LFG-2)로 동정되었다. Str. salivarius subsp. thermophilus LFG-1의 최적 생장온도는 $40-45^{\circ}C$, 최적온도에서 대수기의 세대시간은 40.6분이었고, $37^{\circ}C$에서 배양 24시간 후 최종 pH는 4.30으로, 상업균주인 Str. thermophilus Body-1의 pH 4.55보다 다소 낮은 경향을 나타내었다. Str. salivarius subsp. thermophilus LFG-1의 단백질 응고력은 상업균주와 같이 높은 응고력을 보였으나, Lc. lactis subsp. lactis(LFG-2)는 낮은 응고력을 보였다. 모든 균주들은 0.3% bile extract 첨가조건에서 22-29%의 내담즙성을 나타내었고, pH 3.0 이하에서는 대부분 사멸하는 약한 내산성을 보였으나 pH 4.5에서는 생장이 양호하여 요구르트와 같은 발효유 제품용 스타터로서 사용 가능성을 보였다.

Keywords

References

  1. Ahn, Y. T., Kim, Y. H., Jung, E. J., Lim, J. H., Kang, H. J., and Kim, H. U. (1999) Resistance of Lactobacilli and Bifidobacteria isolated from fermented milk products to low pH and bile acid. Kor. J. Anim. Sci. 41, 335-342
  2. Berg, J. C., Smiths, A., Pot, B., Ledeboer, A. M., Kersters, K., Verbake, M. A., and Verrips, C. T. (1993) Isolation, screening and identification of lactic acid bacteria from traditional food fermentation processes and culture collections. Food Biotech. 7, 189-205 https://doi.org/10.1080/08905439309549857
  3. Beveridge, T. J. and Graham, L. L. (1991) Surface layers of bacteria. Microbiol. Rev. 55, 684-705
  4. Clark, P. A., Cotton, L. N., and Martin, J. H. (1993) Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods : II-Tolerance to simulated pH of Human Stomachs. Milk Industry Foundation 28, 11-14
  5. Conway, P.L., Gorbach, S. L., and Goldin, B. R. (1987) Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70, 1-12 https://doi.org/10.3168/jds.S0022-0302(87)79974-3
  6. Dick, J. C., Robijn, G. W., Janssen, A. C., Giuseppin, M. L. F., Vreeker, R., Kamerling, J. P., Vliegnthart, J. F. G., Ledeboer, A. M., and Verrips, C. T. (1995) Production of a novel extracellular polysaccharide by Lactobacillus sake 0-1 and characterization of the polysaccharide. Appl. Environ. Microbiol. 61, 2840-2844
  7. Ham, J. S., In, Y. M., Jeong, S. G., Kim, D. W., Kim, H. B., Kim, Y. K., Ahn, Y. T., and Kim, H. U. (2000) Goat milk koumiss making and lactic acid production of Candida kefir. Korean J. Dairy Sci. Technol. 18, 151-163
  8. Hull, M. E. (1947) Studies on milk proteins. II. Colorimetric determination of the partial hydrolysis of the proteins in milk. J. Dairy Sci. 30, 881-884 https://doi.org/10.3168/jds.S0022-0302(47)92412-0
  9. Hur, C. S., Lee, J. H., Baek, Y. J., and Kim, H. U. (1995) Characteristics of polysaccharide produced by Bifidobacteria and lactic acid bacteria. Kor. J. Dairy Technol. & Sci. 13, 27-39
  10. Hutter, G., Schlagenhauf, U., Valenza, G., Horn, M., Burgemeister, S., Claus, H., and Vogel, U. (2003) Molecular analysis of bacteria in periodontitis: evaluation of clone libraries, novel phylotypes and putative pathogens. Microbiology. 149, 67-75 https://doi.org/10.1099/mic.0.25791-0
  11. Jeong, D. H. (2004) Science of lactic acid bacteria. Shinilbooks Co., Seoul, Korea, pp.120-136
  12. Joo, Y. C. (2003) Studies on the characteristics of fermented milk cultured with lactic acid bacteria and yeast isolated from kefir. Ph. D. Thesis, Seoul Natl. Univ
  13. Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L., and Pace, N. R. (1985) Rapid determination of 16s ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. 82, 6955-6959 https://doi.org/10.1073/pnas.82.20.6955
  14. Lee, S. K. (1991) Biochemical changes in accelerated lowfat cheddar cheese ripening with Micrococcus spp. as adjunct. Ph. D. Thesis, Konkuk Univ
  15. Park, S. Y., Ko, Y. T., Jeong, H. K., Yang, J. O., Chung, H. S., Kim, Y. B., and Ji, G. E. (1996) Effect of various lactic acid bacteria on the serum cholesterol levels in rats and resistance to acid, bile and antibiotics. Kor. J. Appl. Microbiol. Biotechnol. 24, 304-310
  16. Rasic, J. L. and Kurmann, J. A. (1978) Yogurt-scientific grounds. technology, manufacture and preparations. Tech. Dairy Publishing House, Copenhagen, Denmark, pp.12-137
  17. Sandford, P. A. (1979) Exocellular, microbial polysaccharides. Adv. Carbohyd. Chem. Biochem. 36, 265-313 https://doi.org/10.1016/S0065-2318(08)60238-3
  18. Simova, E., Beshkova, D., Angellov, A., Hiritozova, T. S., Fregonova, G., and Spasov, Z. (2002) Lactic acid bacteria and yeasts in kefir grains and kefir made from them. J. Ind. Microbiol. Biotechnol. 28, 1-6 https://doi.org/10.1038/sj/jim/7000186
  19. Sutherland, I. W. (1972) Bacterial exopolysaccharide. Adv. Microbial physio. 8, 143-213 https://doi.org/10.1016/S0065-2911(08)60190-3
  20. Williams, S. T. and Davis, F. L. (1967) Use of a scanning electron microscope for the examination of Actinomycetes. J. Gen. Microbiol. 48, 171-177 https://doi.org/10.1099/00221287-48-2-171
  21. Wiseman, A. (1983) Principles of biotechnology. Blackie & Son Ltd. London, p. 23

Cited by

  1. Characteristics of Cow Milk and Goat Milk Yogurts Fermented by Streptococcus thermophilus LFG Isolated from Kefir vol.33, pp.6, 2013, https://doi.org/10.5851/kosfa.2013.33.6.787
  2. Complete nucleotide sequence of the 16S rRNA from Lactobacillus paracasei HS-05 isolated from women’s hands vol.5, pp.1, 2015, https://doi.org/10.1186/s13568-015-0158-8
  3. Isolation and Characterization of Lactic Acid Bacteria with Angiotensin-Converting Enzyme Inhibitory and Antioxidative Activities vol.21, pp.10, 2011, https://doi.org/10.5352/JLS.2011.21.10.1428
  4. Potential Probiotic Properties of Exopolysaccharide Producing Lactic Acid Bacteria Isolated from Fermented Soybean Product vol.43, pp.5, 2014, https://doi.org/10.3746/jkfn.2014.43.5.749
  5. Characteristics of Exopolysaccharide Produced in Goat Milk Yogurt Cultured with Streptococcus thermophilus LFG Isolated from Kefir vol.29, pp.2, 2009, https://doi.org/10.5851/kosfa.2009.29.2.143
  6. Assessment of the Sequential Simulated Gastrointestinal Tolerance of Lactic Acid Bacteria from Kefir Grains by Response Surface Methodology vol.74, pp.6, 2009, https://doi.org/10.1111/j.1750-3841.2009.01237.x
  7. 과채발효액의 항균 및 탈취력 효과와 사료 첨가시 계란 품질에 미치는 영향 vol.52, pp.2, 2009, https://doi.org/10.3839/jabc.2009.014
  8. 전통 김치로부터 Probiotic 유산균의 분리 및 우유 발효 특성 vol.37, pp.2, 2008, https://doi.org/10.22424/jmsb.2019.37.2.115