Co-expression of Human Proteins (IL-10, TPO and/or Lactoferrin) into Milk of Cross-Breed Transgenic Mouse

  • Zheng, Zhen-Yu (The College of Animal Husbandary and Veterinary, Henan Agricultural University) ;
  • Lee, Hyo-Sang (Center for Regenerative Medicine, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Oh, Keon-Bong (Center for Regenerative Medicine, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Koo, Deog-Bon (Center for Regenerative Medicine, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Han, Yong-Mahn (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Kyung-Kwang (Center for Regenerative Medicine, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 발행 : 2008.03.31

초록

We have previously produced transgenic (TG) mice expressing the human lactoferrin (hLF), interleukin-10 (hIL-10), and thrombopoietin (hTPO) proteins in the milk. In this study, we examined whether simple crossbreeding between two kids of a single transgenic mouse can produce double transgenics co-expressing two human proteins.. The hLF male, and the hIL-10 male were crossbred with the hIL-10 and hTPO females, and the hTPO female, respectively. PCR analysis for genotyping showed 32%, 23% and 24% double transgenic rates for hLF/hIL-10, hLF/hTPO, and hIL-10/hTPO transgenes, respectively. We analyzed the expression levels of the human proteins from double transgenic mice and compared those with their single transgenic siblings. All double transgenic co-expressed two human proteins at comparable levels to singles', unless hTPO was not co-expressed: for hLF, 1.1 mg/ml in hLF/hIL-10, whereas 0.5 mg/ml in hLF/hTPO; for hIL-10, 4.1 mg/ml in hIL-10/hLF, whereas 1.4 mg/ml in hIL-10/hTPO. Ihe downregulation of hTPO to half level of singles' was observed in double transgenic mice. The possible reason why hTPO co-expressed might lead to down-regulation of another human protein was discussed. These results suggested that double transgenic generated by crossbreeding between two singles' could be useful system for bioreactor.

키워드

참고문헌

  1. Aigner B, Fleischmann M, Muller M, Brem G (1999): Stable long-term germ-line transmission of transgene integration sites in mice. Transgenic Research 8(1):1-8 https://doi.org/10.1023/A:1008824028100
  2. Bartley TD, Bogenberger J, Hunt P, Li YS, Lu HS, Martin F, Chang MS, Samal B, Nichol JL, Swift S, et al. (1994): Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell 77(7):1117-1124 https://doi.org/10.1016/0092-8674(94)90450-2
  3. Chhabra A, Chakraborty NG, Mukherji B (2008): Silencing of endogenous IL-10 in human dendritic cells leads to the generation of an improved CTL response against human melanoma associated antigenic epitope, MART-1(27-35). Clin Immunol 126(3):251-259 https://doi.org/10.1016/j.clim.2007.11.011
  4. Choi YH, Oh KB, Kang YK, Fang NS, Seo KW, Lee KK, Lee CS (1998): Stable inheritance of bovine bcasein/bovine growth hormone fusion gene in transgenic mice. Korean J Animal Reprod 22(3):237- 244
  5. Chrenek P, Vasieek D, Makarevich A, Jureik R, Suvegova K, Bauer M, Rafay J, Bulla J, Hetenyi L, Erickson J, Paleyanda RK (2004): Stability of transgene transmission in three generations of transgenic rabbits after single or double pronuclear microinjection. 8th WRC, Mexico September:44-50
  6. De Sauvage FJ, Hass PE, Spencer SD, Malloy BE, Gurney AL, Spencer SA, Darbonne WC, Henzel WJ, Wong SC, Kuang WJ, et al. (1994): Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature 369(6481):533-538 https://doi.org/10.1038/369533a0
  7. Edmunds T, Van Patten SM, Pollock J, Hanson E, Bernasconi R, Higgins E, Manavalan P, Ziomek C, Meade H, McPherson JM, Cole ES (1998): Transgenically produced human antithrombin: structural and functional comparison to human plasma-derived antithrombin. Blood 91(12):4561-4571
  8. Han YM, Koo DB, Park JS, Kim YH, Lee KJ, Lee KK (2005): Transmission of bovine b-casein/human lactoferrin fusion gene in transgenic cattle. Reprod Dev Biol 29(4):235-239
  9. Kim SJ, Lee KW, Yu DY, Han YM, Lee CS, Nam MS, Moon HB, Lee KK (1997): Expression analysis of a bovine $\beta$-casein/human lactoferrin hybrid gene in transgenic mice. Journal of Reproduction and Development 43(2):143-149 https://doi.org/10.1262/jrd.43.143
  10. Kim SJ, Sohn BH, Jeong S, Pak KW, Park JS, Park IY, Lee TH, Choi YH, Lee CS, Han YM, Yu DY, Lee KK (1999): High-level expression of human lactoferrin in milk of transgenic mice using genomic lactoferrin sequence. J Biochem 126(2):320-325 https://doi.org/10.1093/oxfordjournals.jbchem.a022452
  11. Ko JH, Lee CS, Kim KH, Pang MG, Koo JS, Fang N, Koo DB, Oh KB, Youn WS, Zheng GD, Park JS, Kim SJ, Han YM, Choi IY, Lim J, Shin ST, Jin SW, Lee KK, Yoo OJ (2000): Production of biologically active human granulocyte colony stimulating factor in the milk of transgenic goat. Transgenic Research 9(3):215-222 https://doi.org/10.1023/A:1008972010351
  12. Lee CS, Fang NZ, Koo DB, Lee YS, Zheng GD, Oh KB, Youn WS, Han YM, Kim SJ, Lim JH, Shin ST, Jin SW, Lee KS, Ko JH, Koo JS, Park CS, Yoo OJ, Lee KK (2000): Embryo recovery and transfer for the production of transgenic goats from Korean native strain, Capra hircus aegagrus. Small Rumin Res 37(1-2):57- 63 https://doi.org/10.1016/S0921-4488(99)00139-X
  13. Lee CS, Kim K, Yu DY, Lee KK (1996): An efficient expression of human growth hormone (hGH) in the milk of transgenic mice using rat beta-casein/hGH fusion genes. Appl Biochem Biotechnol 56(3):211-222 https://doi.org/10.1007/BF02786953
  14. Lee WK, Kim SJ, Hong S, Lee T, Han Y, Yoo OJ, Im KS, Lee KK (1998): Expression of a bovine b-casein/human lysozyme fusion gene in the mammary gland of transgenic mice. J Biochem Mol Biol 31:413-417
  15. Majka M, Ratajczak J, Villaire G, Kubiczek K, Marquez LA, Janowska-Wieczorek A, Ratajczak MZ (2002): Thrombopoietin, but not cytokines binding to gp130 protein-coupled receptors, activates MAPKp42/44, AKT, and STAT proteins in normal human $CD34^+$ cells, megakaryocytes, and platelets. Exp Hematol 30(7):751-760 https://doi.org/10.1016/S0301-472X(02)00810-X
  16. Massoud M, Attal J, Thepot D, Pointu H, Stinnakre MG, Theron MC, Lopez C, Houdebine LM (1996): The deleterious effects of human erythropoietin gene driven by the rabbit whey acidic protein gene promoter in transgenic rabbits. Reproduction, Nutrition, Development 36(5):555-563 https://doi.org/10.1051/rnd:19960511
  17. Mikus T, Poplstein M, Sedlakova J, Landa V, Jenikova G, Trefil P, Lidicky J, Maly P (2004): Generation and phenotypic analysis of a transgenic line of rabbits secreting active recombinant human erythropoietin in the milk. Transgenic Research 13(5):487-498 https://doi.org/10.1007/s11248-004-9596-9
  18. Miyakawa Y, Oda A, Druker BJ, Miyazaki H, Handa M, Ohashi H, Ikeda Y (1996): Thrombopoietin induces tyrosine phosphorylation of Stat3 and Stat5 in human blood platelets. Blood 87(2):439-446
  19. Murray PJ (2007): The JAK-STAT signaling pathway: input and output integration. J Immunol 178(5):2623-2629 https://doi.org/10.4049/jimmunol.178.5.2623
  20. Oh KB, Choi YH, Kang YK, Choi WS, Kim MO, Lee KS, Lee KK, Lee CS (1999): A hybrid bovine betacasein/bGH gene directs transgene expression to the lung and mammary gland of transgenic mice. Transgenic Research 8(4):307-311 https://doi.org/10.1023/A:1008978129000
  21. Platenburg GJ, Kootwijk EP, Kooiman PM, Woloshuk SL, Nuijens JH, Krimpenfort PJ, Pieper FR, de Boer HA, Strijker R (1994): Expression of human lactoferrin in milk of transgenic mice. Transgenic Research 3(2):99-108 https://doi.org/10.1007/BF01974087
  22. Pollock DP, Kutzko JP, Birck-Wilson E, Williams JL, Echelard Y, Meade HM (1999): Transgenic milk as a method for the production of recombinant antibodies. Journal of Immunological Methods 231(1-2):147-157 https://doi.org/10.1016/S0022-1759(99)00151-9
  23. Rodriguez A, Castro FO, Aguilar A, Ramos B, Del Barco DG, Lleonart R, De la Fuente J (1995): Expression of active human erythropoietin in the mammary gland of lactating transgenic mice and rabbits. Biol Res 28(2):141-153
  24. Rudolph NS (1999): Biopharmaceutical production in transgenic livestock. Trends Biotechnol 17(9):367-374 https://doi.org/10.1016/S0167-7799(99)01341-4
  25. Sohn BH, Chang HG, Kang HS, Yoon H, Bae YS, Lee KK, Kim SJ (2003): High level expression of the bioactive human interleukin-10 in milk of transgenic mice. J Biotechnol 103(1):11-19 https://doi.org/10.1016/S0168-1656(03)00072-5
  26. Sohn BH, Kim SJ, Park H, Park SK, Lee SC, Hong HJ, Park YS, Lee KK (1999): Expression and characterization of bioactive human thrombopoietin in the milk of transgenic mice. DNA and Cell Biology 18(11):845-852 https://doi.org/10.1089/104454999314845
  27. Van Cott KE, Lubon H, Russell CG, Butler SP, Gwazdauskas FC, Knight J, Drohan WN, Velander WH (1997): Phenotypic and genotypic stability of multiple lines of transgenic pigs expressing recombinant human protein C. Transgenic Research 6(3):203-212 https://doi.org/10.1023/A:1018442124584
  28. Velliyagounder K, Kaplan JB, Furgang D, Legarda D, Diamond G, Parkin RE, Fine DH (2003): One of two human lactoferrin variants exhibits increased antibacterial and transcriptional activation activities and is associated with localized juvenile periodontitis. Infect Immun 71(11):6141-6147 https://doi.org/10.1128/IAI.71.11.6141-6147.2003
  29. Ward PP, Uribe-Luna S, Conneely OM (2002): Lactoferrin and host defense. Biochem Cell Biol 80(1):95-102 https://doi.org/10.1139/o01-214
  30. Wright G, Carver A, Cottom D, Reeves D, Scott A, Simons P, Wilmut I, Garner I, Colman A (1991): High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Bio/technology (Nature Publishing Company) 9(9):830-834 https://doi.org/10.1038/nbt0991-830
  31. Zhao L, Hart S, Cheng J, Melenhorst JJ, Bierie B, Ernst M, Stewart C, Schaper F, Heinrich PC, Ullrich A, Robinson GW, Hennighausen L (2004): Mammary gland remodeling depends on gp130 signaling through Stat3 and MAPK. J Biol Chem 279(42):44093-44100 https://doi.org/10.1074/jbc.M313131200
  32. Zinovieva N, Lassnig C, Schams D, Besenfelder U, Wolf E, Muller S, Frenyo L, Seregi J, Muller M, Brem G (1998): Stable production of human insulin-like growth factor 1 (IGF-1) in the milk of hemi- and homozygous transgenic rabbits over several generations. Transgenic research 7(6):437-447 https://doi.org/10.1023/A:1008831028620