Efficient Gene Delivery into Hematopoietic Stem Cells by Intra-Bone Marrow Injection of Retrovirus

IBM 이식을 통한 골수 조혈 줄기 세포에의 효과적인 유전자 도입

  • Lee, Byun-Joo (Graduate School of Life Science and Biotechnology, College of Medicine, CHA Stem Cell Institute, Pochon CHA University) ;
  • Lee, Yong-Soo (Graduate School of Life Science and Biotechnology, College of Medicine, CHA Stem Cell Institute, Pochon CHA University) ;
  • Kim, Hye-Sun (Graduate School of Life Science and Biotechnology, College of Medicine, CHA Stem Cell Institute, Pochon CHA University) ;
  • Kim, Yu-Kyung (Graduate School of Life Science and Biotechnology, College of Medicine, CHA Stem Cell Institute, Pochon CHA University) ;
  • Kim, Jae-Hwan (Graduate School of Life Science and Biotechnology, College of Medicine, CHA Stem Cell Institute, Pochon CHA University) ;
  • Park, Jin-Ki (Animal Biotechnology Division, National Livestock Research Institute) ;
  • Chung, Hak-Jae (Animal Biotechnology Division, National Livestock Research Institute) ;
  • Chang, Won-Kyong (Animal Biotechnology Division, National Livestock Research Institute) ;
  • Kim, Dong-Ku (Graduate School of Life Science and Biotechnology, College of Medicine, CHA Stem Cell Institute, Pochon CHA University)
  • 이현주 (포천중문의과대학교 차 줄기세포 연구소) ;
  • 이용수 (포천중문의과대학교 차 줄기세포 연구소) ;
  • 김혜선 (포천중문의과대학교 차 줄기세포 연구소) ;
  • 김유경 (포천중문의과대학교 차 줄기세포 연구소) ;
  • 김재환 (포천중문의과대학교 차 줄기세포 연구소) ;
  • 박진기 (축산과학원 응용생명공학과) ;
  • 정학재 (축산과학원 응용생명공학과) ;
  • 장원경 (축산과학원 응용생명공학과) ;
  • 김동구 (포천중문의과대학교 차 줄기세포 연구소)
  • Published : 2008.03.31

Abstract

Efficient gene transfer into hematopoietic stem cells is a great tool for gene therapy of hematopoietic disease. Retrovirus have been extensively used for gene delivery and gene therapy. However, current in vitro gene transfer has some obstacles suck as induction of differentiation loss of self-renewal capacity, and down-regulation of homing efficiency for in vitro hematopoietic stem cells transplantation. To overcome these problems, we developed efficient in vitro retroviral transfer technique by direct intra-bone marrow injection (IBM). We identified effective retrovirus gene transfer in bone marrow hematopoietic cells in vitro. Two weeks after retrovirus transfer via IBM injection, we observed stable EGFP gene expression in bone marrow, lymph node, spleen, and liver cells. In addition, $6.4{\pm}2.7%$ of hematopoietic stem/progenitor cells were expressed EGFP transgene from flow cytometry analysis. Our results demonstrate that in vitro retrovirus gene transfer via IBM injection can provide a viable alternative to current or moo gene transfer approach.

조혈 줄기 세포에의 효과적인 유전자 전달은 유전자 치료의 새로운 가능성을 제시할 수 있다. 레트로바이러스를 이용한 유전자 전달 기술은 많은 기초 연구와 임상 시도가 이루어진 대표적인 바이러스이다. 그러나 현재 사용되고 있는 in vitro에서의 조혈 줄기 세포에의 유전자 도입은 조혈 줄기 세포의 분화 유도, 자기 복제 능력과homing 능력의 저하 등 많은 문제점이 있다. 본 연구는 이러한 문제점을 극복하기 위한 방법으로서 마우스의 대퇴골에 직접 레트로바이러스를 이식하는 IBM (Intra-Bone Marrow) 방법을 이용하여 조혈 줄기 세포에의 효과적인 유전자 도입을 시도하였다. IBM 이식 2주 후 마우스의 각 조직을 분석한 결과, 골수뿐 아니라 림파절, 비장, 간장 세포 등에서 유전자가 안정적으로 발현하는 것을 관찰하였다. 또한, $6.4{\pm}2.7%$의 골수조직 존재 조혈줄기/전구세포에서 도입된 유전자가 안정적으로 발현하고 있는 사실을 확인하였다. 본 연구의 결과를 바탕으로 IBM 이식 방법을 이용한 생체 조직 내 레트로바이러스의 유전자 도입은 조혈 줄기 세포를 이용한 유전자 치료에 매우 효과적인 방법이라는 사실을 시사해주고 있다.

Keywords

References

  1. Dunbar CE (1996): Gene transfer to hematopoietic stem cells: implications for gene therapy of human disease. Annu Rev Med 47:11-20 https://doi.org/10.1146/annurev.med.47.1.11
  2. Ballas CB, Zielske SP, Gerson, SL (2002): Adult bone marrow stem cells for cell and gene therapies: implications for greater use. J Cell Biochem Suppl 38:20-28
  3. Engel BC, Kohn, DB (2003): Gene therapy for inborn and acquired immune deficiency disorders. Acta Haematol 110:60-70 https://doi.org/10.1159/000072455
  4. Cornetta K, Fan Y (1997): Retroviral gene therapy in hematopoietic diseases. J Clin Apheresis 12:187-193 https://doi.org/10.1002/(SICI)1098-1101(1997)12:4<187::AID-JCA6>3.0.CO;2-6
  5. Cavazzana CM, Hacein BS, Saint BG, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A (2000): Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288: 669-672 https://doi.org/10.1126/science.288.5466.669
  6. Hacein BAS, Deist F, Carlier F, Bouneaud C, Hue C, Villartay JP, Thrasher AJ, Wulffraat N, Sorensen R, Dupuis GS, Fischer A, Davies EG, Kuis W, Leiva L, Cavazzana CM (2002): Sustained correction of Xlinked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185-1193 https://doi.org/10.1056/NEJMoa012616
  7. Hanenberg H, Xiao XL, Dilloo D, Hashino K, Kato I, Williams DA (1996): Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian. Nat Med 2:876-882 https://doi.org/10.1038/nm0896-876
  8. Kurre P, Morris J, Horn PA, Harkey MA, Andrews RG, Kiem HP (1998): Improved gene transfer into baboon marrow repopulating cells using recombinant human fibronectin fragment CH-296 in combination with interleukin-6, stem cell factor, FLT-3 ligand, and megakaryocyte growth and development factor. Blood 92:1878-1886
  9. Abonour R (2000): Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long term repopulating hematopoietic stem cells. Nat Med 6:652-658.10 https://doi.org/10.1038/76225
  10. Kohn DB, Sadelain M, Dunbar C, Bodine D, Kiem HP, Candotti F, Tisdale J, Riviere I, Blau CA, Richard RE, Sorrentino B, Nolta J, Malech H, Glorioso J (2003): American Society of Gene Therapy (ASGT) ad hoc subcommittee on retroviral-mediated gene transfer to hematopoietic stem cells. Mol Ther 8:180-187 https://doi.org/10.1016/S1525-0016(03)00212-0
  11. Rosenberg SA, Blaese RM, Brenner MK, Deisseroth AB, Ledley FD, Lotze MT, Wilson JM, Nabel GJ, Walker R (2000): Human gene marker/therapy clinical protocols. Hum Gene Ther 11:919-979 https://doi.org/10.1089/10430340050015536
  12. Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL (2001): Physiological migration of hematopoietic stem and progenitor cells. Science 294:1933-1936 https://doi.org/10.1126/science.1064081
  13. Wagers AJ, Allsopp RC, Weissman IL (2002): Changes in integrin expression are associated with altered homing properties of $Lin^{-/low}Thy1.1^{low}Sca-1^-c-Kit^-$-hematopoietic stem cells following mobilization by cyclophosphamide/granulocyte colony-stimulating factor. Exp Hematol 30:176-185 https://doi.org/10.1016/S0301-472X(01)00777-9
  14. Jetmore A, Plett PA, Tong X (2002): Homing efficiency, cell cycle kinetics, and survival of quiescent and cycling human $CD34^-$ cells transplanted into conditioned NOD/SCID recipients. Blood 99:1585-1593 https://doi.org/10.1182/blood.V99.5.1585
  15. Yahata T, Ando K, Sato T, Miyatake H, Nakamura Y, Muguruma Y, Kato S, Hotta T (2003): Ahighly sensitive strategy for SCID-repopulating cell assay by direct injection of primitive human hematopoietic cells into NOD/SCID mice bone marrow Blood 15:2905-2913
  16. Burger JA, Spoo A, Dwenger A, Burger M, Behringer D (2003): CXCR4 chemokine receptors (CD184) and alpha4beta1 integrins mediate spontaneous migration of human $CD34^+$ progenitors and acute myeloid leukaemia cells beneath marrow stromal cells (pseudoemperipolesis). Br J Haematol 122:579-89 https://doi.org/10.1046/j.1365-2141.2003.04466.x
  17. Peters SO, Kittler ELW, Ramshaw HS, Quesenberry PJ (1995): Murine marrow cells expanded in culture with IL-3, IL-6, and SCF acquire an engraftment defect in normal hosts. Exp Hematol 23:461-469
  18. Szilvassy SJ, Bass MJ, Zant GV, Grimes B (1999) Organ selective homing defines engraftment kinetics of murine hematopoietic stem cells and is compromised by ex vivo expansion. Blood 93:1557-1566
  19. Onodera M, Yachie A, Nelson DM, Welchlin H, Morgan RA, Blaese RM (1997): A simple and reliable method for screening retroviral producer clones without selectable markers. Hum Gene Ther 8:1189-1194 https://doi.org/10.1089/hum.1997.8.10-1189
  20. Culver KW (1994): The first human gene therapy experiment. Gene therapy-A handbook for physician. Marry Ann Liebert 1:33-40
  21. Kaneko S, Onodera M, Fujiki Y, Nagasawa T, Nakauchi H (2001): Simplified retroviral vector GCsap with murine stem cell virus long terminal repeat allows high and continued expression of enhanced green fluorescent protein by human hematopoietic progenitors engrafted in NOD/SCID Mice. Human gene thrapy 12:35-44 https://doi.org/10.1089/104303401450942
  22. Worsham DN, Schuesler T, Kalle CV, Pan D (2006): In vivo gene transfer into adult stem cells in unconditioned mice by in situ delivery of a lentiviral vector. Mol Ther 14:514-524 https://doi.org/10.1016/j.ymthe.2006.05.014
  23. Kushida T, Inaba M, Hisha H (2001): Intra-bone marrow injection of allogeneic bone marrow cells: a powerful new strategy for treatment of intractable autoimmune diseases in MRL/lpr mice. Blood 97:3292-3299 https://doi.org/10.1182/blood.V97.10.3292
  24. Nelson DM, Metzger ME, Donahue RE, Morgan RA (1997): In vivo retrovirus mediated gene transfer into multiple hematopoietic lineages in rabbits without preconditioning. Hum Gene Therapy 8:747-754 https://doi.org/10.1089/hum.1997.8.6-747
  25. Porada CD, Tran ND, Zhao Y, Anderson WF, Zanjani ED (2000): Neonatal gene therapy: transfer and expression of exogenous genes in neonatal sheep following direct injection of retroviral vectors into the bone marrow space. Exp Hematol 28:642-650 https://doi.org/10.1016/S0301-472X(00)00158-2
  26. Pike-OK, Ridder D, Weerkamp F, Baert MR, Thrasher AJ, Wagemaker G, van Dongen JJ, Staal FJ (2006): Gene therapy: Is IL2RG oncogenic in T-cell development?. Nature 21:443-444