References
- R. P. Agarwal, Difference Equations and Inequalities, Theory, methods, and applications. Monographs and Textbooks in Pure and Applied Mathematics, 155. Marcel Dekker, Inc., New York, 1992
- R. P. Agarwal and W. Zhang, Periodic solutions of difference equations with general periodicity, Comput. Math. Appl. 42 (2001), no. 3-5, 719-727 https://doi.org/10.1016/S0898-1221(01)00191-2
- Jingliang Chen and Xianghui Chen, The Particular Matrix, Tsinghua University Press, 2000
- S. N. Eladi, An Introduction to Difference Equations, Second edition. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1999
- S. N. Elaydi and S. Zhang, Stability and periodicity of difference equations with finite delay, Funkcial. Ekvac. 37 (1994), no. 3, 401-413
- L. H. Erbe, H. Xia, and J. S. Yu, Global stability of a linear nonautonomous delay difference equation, J. Differ. Equations Appl. 1 (1995), no. 2, 151-161 https://doi.org/10.1080/10236199508808016
- Z. M. Guo and J. S. Yu, Existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China Ser. A 46 (2003), no. 4, 506-515 https://doi.org/10.1007/BF02884022
- Z. M. Guo and J. S. Yu, The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc. (2) 68 (2003), no. 2, 419-430 https://doi.org/10.1112/S0024610703004563
- J. K. Hale and J. Mawhin, Coincidence degree and periodic solutions of neutral equations, J. Differential Equations 15 (1974), 295-307 https://doi.org/10.1016/0022-0396(74)90081-3
- J. L. Kaplan and J. A. Yorke, Ordinary differential equations which yield periodic solutions of differential delay equations, J. Math. Anal. Appl. 48 (1974), 317-324 https://doi.org/10.1016/0022-247X(74)90162-0
- V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Mathematics and its Applications, 256. Kluwer Academic Publishers Group, Dordrecht, 1993
- H. Matsunaga, T. Hara, and S. Sakata, Global attractivity for a nonlinear difference equation with variable delay, Comput. Math. Appl. 41 (2001), no. 5-6, 543-551 https://doi.org/10.1016/S0898-1221(00)00297-2
- J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74. Springer-Verlag, New York, 1989
- P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986
- X. H. Tang and J. S. Yu, Oscillation of nonlinear delay difference equations, J. Math. Anal. Appl. 249 (2000), no. 2, 476-490 https://doi.org/10.1006/jmaa.2000.6902
- K. Yosida, Functional Analysis, Springer-Verlag, Berlin, 1995
- J. S. Yu, Asymptotic stability for a linear difference equation with variable delay, Comput. Math. Appl. 36 (1998), no. 10-12, 203-210 https://doi.org/10.1016/S0898-1221(98)80021-7
- G. Zhang, Critical point Theory and Application, Shanghai Press, 1986
- Z. Zhou and Q. Zhang, Uniform stability of nonlinear difference systems, J. Math. Anal. Appl. 225 (1998), no. 2, 486-500 https://doi.org/10.1006/jmaa.1998.6039
- Z. Zhou, Periodic orbits on discrete dynamical systems, Comput. Math. Appl. 45 (2003), no. 6-9, 1155-1161 https://doi.org/10.1016/S0898-1221(03)00075-0
- Z. Zhou, J. Yu, and Z. Guo, Periodic solutions of higher-dimensional discrete systems, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), no. 5, 1013-1022 https://doi.org/10.1017/S0308210500003607
- Z. Zhou, J. S. Yu and Z. M. Guo, The existence of periodic and subharmonic solutions to subquadratic discrete Hamiltonian systems, ANZIAM J. 47 (2005), no. 1, 89-102 https://doi.org/10.1017/S1446181100009792
Cited by
- Multiplicity of Periodic Solutions for a Higher Order Difference Equation vol.2014, 2014, https://doi.org/10.1155/2014/925290
- Periodic solutions for second-order difference equations with resonance at infinity vol.18, pp.1, 2012, https://doi.org/10.1080/10236191003730498
- Existence and Multiple Solutions for Higher Order Difference Dirichlet Boundary Value Problems vol.19, pp.5, 2018, https://doi.org/10.1515/ijnsns-2017-0176