DOI QR코드

DOI QR Code

COMPLETE MOMENT CONVERGENCE OF MOVING AVERAGE PROCESSES WITH DEPENDENT INNOVATIONS

  • Kim, Tae-Sung (DEPARTMENT OF MATHEMATICS WONKWANG UNIVERSITY) ;
  • Ko, Mi-Hwa (DEPARTMENT OF MATHEMATICS WONKWANG UNIVERSITY) ;
  • Choi, Yong-Kab (DIVISION OF MATHEMATICS AND INFORMATION STATISTICS GYEONGSANG NATIONAL UNIVERSITY)
  • Published : 2008.03.31

Abstract

Let ${Y_i;-\infty<i<\infty}$ be a doubly infinite sequence of identically distributed and $\phi$-mixing random variables with zero means and finite variances and ${a_i;-\infty<i<\infty}$ an absolutely summable sequence of real numbers. In this paper, we prove the complete moment convergence of ${{\sum}_{k=1}^{n}\;{\sum}_{i=-\infty}^{\infty}\;a_{i+k}Y_i/n^{1/p};n\geq1}$ under some suitable conditions.

Keywords

References

  1. J. I. Baek, T. S. Kim, and H. Y. Liang, On the convergence of moving average processes under dependent conditions, Aust. N. Z. J. Stat. 45 (2003), no. 3, 331-342 https://doi.org/10.1111/1467-842X.00287
  2. R. M. Burton and H. Dehling, Large deviations for some weakly dependent random processes, Statist. Probab. Lett. 9 (1990), no. 5, 397-401 https://doi.org/10.1016/0167-7152(90)90031-2
  3. Y. S. Chow, On the rate of moment convergence of sample sums and extremes, Bull. Inst. Math. Acad. Sinica 16 (1988), no. 3, 177-201
  4. I. A. Ibragimov, Some limit theorems for stationary processes, Teor. Verojatnost. i Primenen. 7 (1962), 361-392
  5. D. L. Li, M. B. Rao, and X. C. Wang, Complete convergence of moving average processes, Statist. Probab. Lett. 14 (1992), no. 2, 111-114 https://doi.org/10.1016/0167-7152(92)90073-E
  6. Y. X. Li and L. X. Zhang, Complete moment convergence of moving-average processes under dependence assumptions, Statist. Probab. Lett. 70 (2004), no. 3, 191-197 https://doi.org/10.1016/j.spl.2004.10.003
  7. H. Y. Liang, Complete convergence for weighted sums of negatively associated random variables, Statist. Probab. Lett. 48 (2000), no. 4, 317-325 https://doi.org/10.1016/S0167-7152(00)00002-X
  8. Q. M. Shao, Almost sure invariance principles for mixing sequences of random variables, Stochastic Process. Appl. 48 (1993), no. 2, 319-334 https://doi.org/10.1016/0304-4149(93)90051-5
  9. L. X. Zhang, Complete convergence of moving average processes under dependence assumptions, Statist. Probab. Lett. 30 (1996), no. 2, 165-170 https://doi.org/10.1016/0167-7152(95)00215-4

Cited by

  1. Toeplitz lemma, complete convergence, and complete moment convergence vol.46, pp.4, 2017, https://doi.org/10.1080/03610926.2015.1026996
  2. On Complete Convergence of Moving Average Process for AANA Sequence vol.2012, 2012, https://doi.org/10.1155/2012/863931
  3. Complete moment convergence of widely orthant dependent random variables vol.46, pp.14, 2017, https://doi.org/10.1080/03610926.2016.1148728
  4. Convergence of Moving Average Processes for Dependent Random Variables vol.40, pp.13, 2011, https://doi.org/10.1080/03610921003797761
  5. Complete moment convergence of moving average processes under ρ-mixing assumption vol.61, pp.6, 2011, https://doi.org/10.2478/s12175-011-0063-9
  6. Complete moment convergence for moving average process generated by ρ − $\rho^{-}$ -mixing random variables vol.2015, pp.1, 2015, https://doi.org/10.1186/s13660-015-0766-5
  7. Complete Convergence for Moving Average Process of Martingale Differences vol.2012, 2012, https://doi.org/10.1155/2012/128492