References
- M. Amyari, Stability of C*-inner products, J. Math. Anal. Appl. 322 (2006), 214-218 https://doi.org/10.1016/j.jmaa.2005.09.014
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66 https://doi.org/10.2969/jmsj/00210064
- C. Baak, H. Chu, and M. S. Moslehian, On the Cauchy-Rassias inequality and linear n-inner product preserving mappings, Math. Inequal. Appl. 9 (2006), no. 3, 453-464
- R. Badora and J. Chmieli'nski, Decomposition of mappings approximately inner product preserving, Nonlinear Anal. 62 (2005), no. 6, 1015-1023 https://doi.org/10.1016/j.na.2005.04.009
- J. Chmielinski, On a singular case in the Hyers-Ulam-Rassias stability of the Wigner equation, J. Math. Anal. Appl. 289 (2004), no. 2, 571-583 https://doi.org/10.1016/j.jmaa.2003.08.042
- J. Chmielinski and S.-M. Jung, The stability of the Wigner equation on a restricted domain, J. Math. Anal. Appl. 254 (2001), no. 1, 309-320 https://doi.org/10.1006/jmaa.2000.7279
- S. Czerwik, Functional equations and inequalities in several variables, World Scientific Publishing Co., Inc., River Edge, NJ, 2002
- G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), no. 1-2, 143-190 https://doi.org/10.1007/BF01831117
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224
- D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of functional equations in several variables, Progress in Nonlinear Differential Equations and their Applications, 34. Birkhauser Boston, Inc., Boston, MA, 1998
- D. H. Hyers, G. Isac, and Th. M. Rassias, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc. 126 (1998), no. 2, 425-430
- D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153 https://doi.org/10.1007/BF01830975
-
G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of
$\psi$ -additive mappings, J. Approx. Theory 72 (1993), no. 2, 131-137 https://doi.org/10.1006/jath.1993.1010 - S.-M. Jung, Hyers-Ulam-Rassias stability of functional equations in mathematical analysis, Hadronic Press, Inc., Palm Harbor, FL, 2001
- I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-858 https://doi.org/10.2307/2372552
- E. C. Lance, Hilbert C*-Modules, LMS Lecture Note Series 210, Cambridge Univ. Press, 1995
- V. M. Manuilov and E. V. Troitsky, Hilbert C*-modules, Translations of Mathematical Monographs, 226. American Mathematical Society, Providence, RI, 2005
- M. S. Moslehian, Asymptotic behavior of the extended Jensen equation, Studia Sci. Math. Hungar (to appear)
- J. G. Murphy, C*-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990
- W. L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468 https://doi.org/10.2307/1996542
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300
- Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130 https://doi.org/10.1023/A:1006499223572
- Th. M. Rassias, Stability of the Generalized Orthogonality Functional Equation, Inner product spaces and applications, 219-240, Pitman Res. Notes Math. Ser., 376, Longman, Harlow, 1997
- Th. M. Rassias, A new generalization of a theorem of Jung for the orthogonality equation, Appl. Anal. 81 (2002), no. 1, 163-177 https://doi.org/10.1080/0003681021000021132
- M. A. Rieffel, Induced representations of C*-algebras, Advances in Math. 13 (1974), 176-257 https://doi.org/10.1016/0001-8708(74)90068-1
- S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York 1964
Cited by
- Orthogonalities and functional equations vol.89, pp.2, 2015, https://doi.org/10.1007/s00010-014-0288-0
- Perturbation of the Wigner equation in inner product C*-modules vol.49, pp.3, 2008, https://doi.org/10.1063/1.2898486