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APPROXIMATELY C*-INNER PRODUCT
PRESERVING MAPPINGS

JACEK CHMIELINSKI AND MOHAMMAD SAL MOSLEHIAN

ABSTRACT. A mapping f : M — N between Hilbert C*-modules ap-
proximately preserves the inner product if
£ (@), f(¥)) — (=, 9]l < o(z,y)

for an appropriate control function ¢(z,y) and all z,y € M. In this pa-
per, we extend some results concerning the stability of the orthogonality
equation to the framework of Hilbert C*-modules on more general re-
stricted domains. In particular, we investigate some asymptotic behavior
and the Hyers-Ulam-Rassias stability of the orthogonality equation.

1. Introduction and preliminaries

The notion of Hilbert C*-module can be regarded as a generalization of
the concepts of Hilbert space and fibre bundle. Hilbert C*-modules were first
studied by I. Kaplansky [15] for commutative C*-algebras and later by M. A.
Rieffel [25] and W. L. Paschke [20] for more general C*-algebras. These objects
are useful tools in many areas such as AW*-algebra theory, theory of opera-
tor algebras, operator K-theory, group representation theory, noncommutative
geometry, locally compact quantum groups, and theory of operator spaces; see
[17] and references therein.

Suppose that A is a C*-algebra and M is a linear space which is an algebraic
left .A-module with a compatible scalar multiplication, i.e., A(az) = a(Az) =
(Aa)z for z € M,a € A, X € C. The space M is called a pre-Hilbert .A-module
(or an inner product .4-module) if there exists an .A-valued inner product (-, ) :
M x M — A with the following properties :

(i) (z,z) >0 and (z,z) =0 if and only if z = 0;

(
(i) Az +y,2) =Mz, 2) + (y, 2);
(ifi) (az,y) = a(z,y);
(iv) (z,y)* = (y,z) forall z,y,z € M,a € A, A € C.
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Note that the condition (i) is understood as a statement in the C*-algebra
A, where an element a is called positive if it can be represented as bb* for some
b € A. The conditions (ii) and (iv) implies the inner product to be conjugate-
linear in its second variable. From the validity of a useful version of the classical
Cauchy-Schwartz inequality it follows that ||z| = ||(z,z)||? is a norm on M
making it into a normed left A-module. The pre-Hilbert module M is called
a Hilbert .4-module if it is complete with respect to the above norm. Some
interesting examples are the usual Hilbert spaces as Hilbert C-modules, and
any C”-algebra 4 as a Hilbert .A-module via {(a,b) = ab* (a,b € A). Notice
that the inner structure of a C*-algebra is essentially more complicated than
complex numbers, hence the notions such as orthogonality and theorems such as
Riesz’ representation in the Hilbert space theory cannot simply be generalized
or transferred to the theory of Hilbert C*-modules.

One may define an “A-valued norm” |-| by |z| = (x,z)'/2. Clearly, || |z| | =
||lz||, for each z € M. It is known that |-| does not satisfy the triangle inequality
in general; cf. [16].

Roughly speaking, a functional equation (£) is stable if any mapping which
approximately satisfies the equation (£) is near to an exact solution of (£).
The equation (£) is called superstable if any approximate solution of (£) is, in
fact, an exact solution.

In 1940 S. M. Ulam [26] posed a stability problem concerning the stability
of group homomorphisms. In the next year, D. H. Hyers [9] gave a partial
affirmative answer to the question of Ulam in the context of Banach spaces.
Hyers’ theorem was generalized for approximate additive mappings by T. Aoki
(2] and for approximate linear mappings by Th. M. Rassias [21] by considering
an unbounded Cauchy difference. The result of Th. M. Rassias has provided
a lot of influence in the development of what we now call Hyers-Ulam-Rassias
stability of functional equations. A number of approaches in the theory, meth-
ods and problems of the stability of functional equations have been published
since the year 1940. The reader is referred to the monographs [7, 10, 14] as well
as to the extensive research survey papers of [8, 12, 22] and the references cited
therein. In particular, several stability results have been obtained for various
equations for mappings on Hilbert C*-modules, see [1].

A mapping I : M — N between Hilbert C*-modules preserves the inner
product if it is a solution of the orthogonality equation

(I(z), I(y)) = (z,y)-
A mapping I preserves the inner product if and only if it is both A-linear (i.e.,
IHaz + Xy + z) = al(z) + M (y) + I(2)

foralla € A, z,y,z € M, X € C) and isometry (i.e., |I(z) — I(y)|| = ||z — ¥,
for all z,y € M). In fact, by the polarization law in Hilbert C*-modules, if T
is A-linear and isometry, then it preserves the inner product (see [16, Theorem
3.5]). For see the converse, fix z,y € M and let u = I(z +y) — Iz — Iy. We
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have
(w,Iz) = I(x+vy),Iz)— Iz, I2)— Iy, I2)
= <x+y,z>—<x,z)—(y,z>
= 0

for all z € M. Hence
(w,u) = (u, I(z +y)) — (u, I[z) — (u, Iy) =0,

and so v = 0. Therefore I is additive. Similarly, one can show that I is
A-linear. Since I preserves the inner product, it clearly is isometry.

A mapping f : M — N approximately preserves the inner product if it
satisfies

I(f (@), () — (=0l < plz,y)

for some appropriate control function ¢(z,y) and all z,y € M.

Recently, the stability of the orthogonality equation (as well as of the so-
called Wigner equation |(f(x), f(y))| = |{z,y)| ) has been studied in the frame-
work of real and complex Hilbert spaces; see e.g. [4, 5, 6, 23, 24] and the
Chapter (IX) of [10]. Another related work is [3] where n-inner product pre-
serving mappings are investigated.

We generalize the main results of [4, 6] concerning the stability of orthogo-
nality spaces to Hilbert C*-modules, prove the stability on a general restricted
domain, investigate some asymptotic aspects and prove the generalized stability
of the orthogonality equation.

Throughout the paper, M and A denote a pre-Hilbert module and a Hilbert
module over a C*-algebra A, respectively. In addition, we denote by N, N
and R the set of positive integers, non-negative integers and real numbers,
respectively. We refer the reader to [19] for undefined notions on C*-algebra
theory and to [16, 17] for more information on Hilbert C*-modules.

2. Stability on restricted domains

Let D be a subset of M x M containing A x A, where A = { €¢ M :
(z,z) € D}, and suppose that there exists a positive number ¢ # 1 such that:

(i) for all (z,y) € D and all m,n € Ny, we have (¢ "z,c"™y) € D;

(if) for all z,y € M\ {0} there are nonnegative integers m, n with

(¢cT"z,c"™My) € D.

For instance, D can be chosen to be M x M, {z e M : ||z|| < d} x{z € M:
lzll < d} or {zeM:|lz|| >d} x{z € M:|z| > d}, where d is a positive
number.

Using some ideas from [4, 6], we are going to extend their main results not
only to more general domains but also to a more general framework.
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Theorem 2.1. Consider a function ¢ : M x M — [0,00) satisfying

1Eim " o(c" ™z, ¢ y) = 0, (z,y) € D.
Let f : M — N be a mapping such that
(2.1) 1{f (@), F)) — (=, 9| < v(z,y),  (z,9) €D.

Then there exist a unique A-linear isometry I : M — N and a mapping
T: M — N such that
f(z) = I(z) + T(z),

[f(z) — I@)|| < Ve(z,2),
(T(z),I(y)) =0

for all z,y € A.

Proof. For the sake of convenience, we introduce the functions f, : M — N
by fo(z) = " f(c™"z) for any n € Ng. Evidently, fo = f. Recall that if a is
an element of the C*-algebra A, then the real part Re(a) of a is defined to be
ata’  We have also [|[Re(a)]| < ||af.

Let x € A and m,n € Ny. We have

[Re((fn(x), fm(2))) — (2, 2)|| = |Re({fn(2), fm(2)) — (w, )|
< [{fal=), fn(2)) — (2, D)l
= "), f(eTMa)) ~ (T w, e )|

< "My(cT Mz, ¢ ™),

(

x,

whence
[fn(@) = frm(2)|?
I1fn(@) = fm(@)] |I?
= [ 1fal®) = fu(@)* |
I{fr (@) = fm(2), fu(@) — Frm(z))]
< AP + | fn(@)]? — 2Re((fa(2), fm (2)))]]
<A@ = 2P0+ 1 fm @) - |l

+2|Re((fn(), fm(2))) — (=, 2)|
(2.2) < ez, c"x) + M p(c ™, ¢ ) + 2 (¢ e, ™).

Thus the sequence {f,(z)} is a Cauchy one in the complete space N, whence
it is convergent. Set

L(z) := nh_}rréo fn(x), x €A
Let (z,y) € Ax A C D. Then
Kfn (@), fo@)) = (@, 9| < (e 2, c™"y)

for all n. Letting n — oo we get
<I*('7")7I*(y)> = (:L‘,Z/)
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Putting m = 0 in (2.2) we get
Ifn(2) = F@)]? < Mplema, ¢ "a) + p(z, 2) + 2¢"p(c "z, 7)
from which we conclude that
(2.3) [1:(z) = f(@)|| < Veolz,z), €A
Let us define the mapping I : M — AN as
n(z) —n(x) .
I(z) = "B (c z), xeM\{0}
0, z =0,

where n{x) = min{n € Ny : ¢™"z € A}. Note that if z is a non-zero ele-
ment in M, then (¢ "z,c ™z) € D for some n,m. If k = max{m,n}, then
(c™*z,c*z) € D and so c %z € A. Hence I is well-defined. If z € A, then
n(z) = 0 and so I(z) = L.(z). It follows then from (2.3) that

(2.4) 11(z) - f(@)l| £ Veolz,z), z€A.

We are going to prove that I is an inner product preserving mapping and
so it is an isometry. To see this, assume that z,y € M. If z = 0 or y = 0, then
(I(z),I{y)) = 0= {(z,y). Let z # 0 and y # 0. Then

U@, I) = (@@L D), D L (0y))

= @ (")), LT Wy)
= M) (@) g omW)g)

= (z,y).
For proving the uniqueness assertion, consider inner product preserving map-

pings I1, I, satisfying || I;(z) — f(z)|| < v/e(z,z) (j =0,1) for all z € A. First
note that for each z € A and all n € Ng we have

[h(z) - L(z)l| = c"[I(c™"z) - Io(c ")
< () = fleT @) + e ) — fcT )|
< 2y/eTrp(cx, e ),

whence Il(a:) = I(z) on A. Now for each x € M, there exists n(z) € Ny such
that ¢™®)z € A. Therefore

L(z) = P (@) g) = D (e ®g) = L(z).

Next, put T'(z) = f(z) — I{x).
Let (x,y) € D, then (z,c="®y) € D and ¢ "Wy € A. Then

(z,c "¢ ™Wy) e D
for all n. Therefore (2.1) yields
1F (@), falc D) = ("D < Pipla, Dy,

A

Thus
(f(z), L(c"Wy)) = (z,c7"Wy),



162 JACEK CHMIELINSKI AND MOHAMMAD SAL MOSLEHIAN

whence (f(z),I(y)) = (z,y), and
(T(x), I(y)) = (f(z) = I(z), I(v)) = (f (), I()) — (=), I(y))
= (f(=), I(y)) — (z,y) = 0.
O

Remark 2.2. If f is a function such that f(cz) = cf(z), then f(0) = 0 and
L(z) = limp o0 ¢"f(c™"x) = f(z) for all z € A. Tt follows that f(z) = I(z)
for all z € M.

The following example, which is a slight modification of Example 1 of [5],
shows that the bound /¢(z,y) in (2.4) is sharp and we have no control on the
bounded function T'. This means that 7T is neither additive nor continuous in
general.

Example 2.3. Let M, N be the Hllbert space £2. Assume that g: M — C

is an arbitrary mapping satisfying |g(z)g(y)| < /eo(z,y) for all z,y € 2.
Define the mapping f : M — N by f(z) = {g(z),t1,%2,...) where z =

(ti,t2,...) € M. Clearly, (f(x), f(y)) = g(z)gly) + (z,y) for all z,y € M.
Then I((t1,t2,...)) = (0,1,t9,...) and T(z) = (g(z),0,0,...) are the unique
mappings fulfilling the required conditions in Theorem 2.1.

Corollary 2.4. Suppose that either p,q > 1 or p,q < 1 are real numbers and
a>0. Let f : M — N be a mapping such that

1(F (), f()) — (. )l < aflzlPllyl?, T,y €EM.
Then there ezists a unique linear isometry I : M — N such that

If(2) — I(z)] < Valz| =

for all x € M.
Proof. Put ¢(z,y) = ofz||?|ly||? Consider D = M x M together with ¢ > 1
ifp,g>1;andc<1ifp,g<1. O

Remark 2.5. The above result holds true alsoin casesp =1, ¢ # lorp # 1, ¢ =
1. The Corollary is not true for p = ¢ = 1, in general. For a counterexample
see Example 2 of [4].

In a particular case, where M and N are of the same finite dimension we
can prove superstability.

Proposition 2.6. Let dimM = dimN < oo. Suppose that f : M — N
satisfies (2.1) with ¢ as in Theorem 2.1. Then there exists a linear isometry
I: M — N such that f =1 on A.

Proof. Let I : M — N be the linear isometry from the assertion of Theorem
21and T = f— 1. I maps M onto a subspace I(M) of V. Since dim M =
dim J(M), and M and N are of the same finite dimension, we get (M) =

For z € A we have T(x)LI(M), i.e., T(z)LN whence T(x) = 0. Thus f =T
on A. O
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Taking D = M x M we get immediately:
Corollary 2.7. Let dimM = dimN < oo and suppose that f : M — N

satisfies
(2.5) W @), fW) — @yl <e(zy), =zyeM
where ¢ : M x M — [0,00) satisfies (with some 0 < ¢ # 1)

lim " p(c ™z, ¢ "y) = 0, z,y € M.

m+n—oo

Then f is an inner product preserving mapping.

3. Asymptotic behavior of orthogonality equation

Following [11, 13], a mapping f : M — N is called p-asymptotically close
to an isometry mapping I if lim 300 i) —L@)l] _ (see also [18]).

=
Definition 3.1. A mapping f : M — N satisfies p-asymptotically the orthog-
onality equation if for each £ > 0 there exists K > 0 such that
(3.1) (£ (=), F(w)) — (2, )| < ell=ll” lyll”
for all z,y € M such that max{||z||, |y]|} > K.

We are going to show that asymptotically orthogonality preserving mappings
are asymptotically close to isometries.

Theorem 3.2. If 0 < p < 1 and a mapping f : M — N satisfies p-
asymptotically the orthogonality equation, then it is p-asymptotically close to a
linear isometry mapping.

Proof. By the assumption f satisfies p-asymptotically the orthogonality equa-
tion, hence there exists Ky > 0 such that
1{f (), f(@)) = (z,»)ll < [lzlI” lyll”

for all 2,y € M with max{||z|, |||} > Ko. It follows from Theorem 2.1 (for
D=A{z: |lz| 2 Ko} x MUM x {z: |z|| = Ko}, A ={z: ||z]| 2 Ko},
0 < c< 1and p(z,y) := ||z||”|ly||’) that there exists a linear isometry Iy such
that
(3.2) 1£(z) — Lo(@)|| < |l=|”
for all z with ||z|| > K.

Given ¢ > 0, the assumption gives again a number K. > Kj such that

1f (@), F () — (&, )|l < ellz]|” llyl”

for all z,y € M with max{||z|,|lyl|} > K.. Applying again Theorem 2.1 we
get an isometry I. such that

(3.3) I/ (z) = @)l < Velz|”

for all z with ||z] > K..
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We claim that I, = Iy. To see this, let z € M\ {0} be an arbitrary element.
There exists N such that for all n > N, ||27z|| > K. > Ko. By (3.2) and (3.3)
we have

e (2) ~ o ()

It

27" L(27z) — L (2" )|
27"[L(2%2) — f2"x)|| + 277 (2" 2) — Lo(2" )|
2P~V (Ve + 1|z

The right hand side tends to zero as n — oo, hence I. = Iy. Thus (3.3) implies
that

IA A

If(z) = L(@)] Ve
i
for all x with ||z|| > K.. Thus f is p-asymptotically close to the isometry
mapping Ig. a

Remark 3.3. Assume that p > 1 and f : M — N is such that for each
€ > 0 there exists K > 0 such that (3.1) holds for all z,y € M satisfying
min{||z||, |lyll} < K. Analogously as above, one can prove that there exists a
linear isometry I : M — A such that

o M@ - 1@
lzfi—o0 [lz||?
4. Hyers—Ulam—Rassias stability

In this section, we prove the Hyers—Ulam-Rassias stability of the orthogo-
nality equation.

Theorem 4.1. Let f: M — N be an approzimately inner product preserving
mapping on M associated with a conirol function ¢ : M x M — [0,00). We
assume that ¢ and the control function ¢ defined by

P(@,y) = (p@+y,z+y) +o@z+y) + oW,z +y)+ oz +y,x)

1/2
+o(z,z) + oy, z) + oz +y,y) + oz, ) + o(y, ) /
satisfy either

(4.1) J(x) = Z 27" (2", 2"x) < 0o and  lim 1/4%p(2"z,2"y) =0
n=0
or

(4.2) P(z) == > 2" (2 7"2,27"7) < 00 and lim 4"p(27"z,27"y) = 0

n=1

for all z,y € M. Then there exists a unique linear isometry I : M — N such
that

If(@) —I@)] < d(z) zeM.
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Proof. Let z,y,z € M and put A = f(z +y) — f(z) — f(y) . We have

A, FNI £ IKflz+y), f(2) — (z+y,2)]
+(f(2), £(2)) ~ (z, | + 1{f(y), f(2)) = (w: &)l
plz +y,2) + oz, 2) + 0y, 2),

IA

whence

1 +y) - fl2) - fw)l?

(A, flz +y) = flz) = f)

(A, Fl + )l + 1A, F@)I+ KA, F)l
ple+y,z+y) + e,z +y) + oY,z +y) + el +y, )
+o(z,2) + oy, 2) + oz +y,9) + p(z, ) + vy, ).

It follows that

IN A

If (@ +y) = flz) - FWIl < Yl y),

whence, in particular,
If(2x) — 2f(2)|| < ¥(z, ), zeM.

Using the induction, one can easily verify the following inequalities:

n—1

(4.3) 27" f(2"e) — 27" fRme)| < Y 2R (2R, 20a),
k=m

44) |2 7e) - 2mf2 )| < Z ¥ 1y(2 e, 27 a)
k=m+1

for all integers n > m > 0 and x € M. It follows that the sequence {c" f(c™"z)}

with ¢ = % or ¢ = 2, respectively, is a Cauchy one, whence it is convergent.

Define the mapping I : M — N by I(z) := limp—oe ¢”f(c™™). Since f is
approximately inner product preserving, we have

A(fle™ ), Fey)) — (e, Ty | < Pole M, ¢ TMy).

Passing to the limit as n tends to infinity we get

(I(z), I(y)) = (z,y), @yeM.
In addition, it follows from (4.3) and (4.4) with m =0 as n — oo that

If (@) = I(@)]| < ¥(x).

Assuming [|0]|” = oo for p < 0, we have the following result.
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Corollary 4.2. Suppose that p # 2 is a real number and 3 > 0. Let f : M —
N be a mapping such that

1{f (@), fF()) — (@, ) < BUI=|1* + yll”)
for all z,y € M. Then there exists a unique linear isometry I : M — N such

that

17~ 1@ < S el sem
Proof. Apply Theorem 4.1 with ¢(z,y) = 8(||z||” + ||y}|?) and consider (4.1) if
p <2, and (4.2) if p > 2. O

Remark 4.3. The case p = 2 remains unsolved.
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