Effects of Cu and Ni Additives for Hydrogen Storage and Release of Fe-based Oxide Mediums

Fe-계 산화물 매체의 수소 저장 및 방출을 위한 Cu 및 Ni 첨가제의 효과

  • Kim, Hong-Soon (Department of Fine Chemicals Engineering & Applied Chemistry, BK21-E2M, Chungnam National Univ.) ;
  • Cha, Kwang-Seo (Department of Fine Chemicals Engineering & Applied Chemistry, BK21-E2M, Chungnam National Univ.) ;
  • Lee, Dong-Hee (Department of Fine Chemicals Engineering & Applied Chemistry, BK21-E2M, Chungnam National Univ.) ;
  • Yoo, Byoung-Kwan (Department of Fine Chemicals Engineering & Applied Chemistry, BK21-E2M, Chungnam National Univ.) ;
  • Kang, Kyoung-Soo (Korea Institute of Energy Research) ;
  • Park, Chu-Sik (Korea Institute of Energy Research) ;
  • Kim, Young-Ho (Department of Fine Chemicals Engineering & Applied Chemistry, BK21-E2M, Chungnam National Univ.)
  • 김홍순 (충남대학교 정밀응용화학과 BK21-에너지환경소재사업단) ;
  • 차광서 (충남대학교 정밀응용화학과 BK21-에너지환경소재사업단) ;
  • 이동희 (충남대학교 정밀응용화학과 BK21-에너지환경소재사업단) ;
  • 유병관 (충남대학교 정밀응용화학과 BK21-에너지환경소재사업단) ;
  • 강경수 (한국에너지기술연구원) ;
  • 박주식 (한국에너지기술연구원) ;
  • 김영호 (충남대학교 정밀응용화학과 BK21-에너지환경소재사업단)
  • Published : 2008.10.30

Abstract

The Effects of Cu or Ni additives co-added with Ce/Zr mixed oxides to Fe-based oxide mediums were investigated for the purpose of the replacement of Rh, a precious metal additive, in terms of hydrogen storage(reduction by hydrogen) and release(water splitting). From the results of temperature programmed reduction(TPR), initial reduction rate of iron oxide in the mediums was greatly increased with the addition of Cu, similar to that of Rh. For isothermal redox reaction of 10 cycles, the total amounts of hydrogen evolved in water splitting steps for the mediums added with Cu or Ni were highly maintained at ca. 7 mmol/g-material, even though the oxidation rates were slightly lower than that for the medium added with Rh. This result suggests that the replacement of Rh to Cu or Ni is possible as a co-additive for Fe-based oxide mediums.

Keywords

References

  1. S. A. Sherif, Frano Barbir, and T. N. Veziroglu, "Towards a hydrogen economy", The Electricity Journal, Vol. 18, 2005, pp. 62-76
  2. K. Otsuka, A. Mito, S. Takenaka, and T. Yamanaka, "Production of hydrogen from methane without $CO_2$-emission mediated by indium oxide and iron oxide", Int. J. Hydrogen Energy, Vol. 26, 2001, pp. 191-194 https://doi.org/10.1016/S0360-3199(00)00070-7
  3. K. Otsuka, C. Yamada, T. Kaburagi, and S. Takenaka, "hydrogen storage and production by redox of iron oxide for polymer electrolyte fuel cell vehicles", Int. J. Hydrogen Energy, Vol. 28, 2003, pp. 335-342 https://doi.org/10.1016/S0360-3199(02)00070-8
  4. K. Otsuka, T. Kaburagi, C. Yamada, and S. Takenaka, "Chemical storage of hydrogen by modified iron oxides", J. Power Sources, Vol. 122, 2003, pp. 111-121 https://doi.org/10.1016/S0378-7753(03)00398-7
  5. V. Hacker, G. Faleschini, H. Fuchs, R. Fankhauser, G. Simader, M. Ghaemi, B. Spreitz, and K. Friedrich, "Usage of biomass gas for fuel cells by the SIR process", J. Power Sources, Vol. 71, 1998, pp. 226-230 https://doi.org/10.1016/S0378-7753(97)02718-3
  6. V. Hacker, R. Fankhauser, G. Faleschini, H. Fuchs, K. Friedrich, M. Muhr, and K. Kordesch, "Hydrogen production by steam-iron process", J. Power Sources, Vol. 86, 2000, pp. 531-535 https://doi.org/10.1016/S0378-7753(99)00458-9
  7. K. Urasaki, N. Tanimoto, T. Hayashi, Y. Sekine, E. Kikuchi, and M. Matsukata, "Hydrogen production via steam-iron reaction using iron oxide modified with very small amounts of palladium and zirconia", Appl. Catal. A Gen., Vol. 288, 2005, pp. 143-148 https://doi.org/10.1016/j.apcata.2005.04.023
  8. S. Takenaka, T. Kaburagi, C. Yamada, K. Nomura, and K. Otsuka, "Storage and supply of hydrogen by means of the redox of iron oxides modified with Mo and Rh species", J. Catal., Vol. 228, 2004, pp. 66-74 https://doi.org/10.1016/j.jcat.2004.08.027
  9. J. C. Ryu, D. H. Lee, K. S. Kang, C. S. Park, J. W. Kim, and Y. H. Kim, "Effect of additives on redox behavior of iron oxide for chemical hydrogen storage", J. Ind. Eng. Chem., Vol. 14, 2008, pp. 252-260 https://doi.org/10.1016/j.jiec.2007.10.003
  10. 이동희, 박주식, 김영호, "수소 저장 및 방출을 위한 Fe 계 산화물 매체의 환원-산화 반응: Rh, Ce 및 Zr 첨가제의 협동 효과", 한국수소 및 신에너지학회 논문집, Vol. 19, No. 3, 2008, pp. 189-198
  11. 임창동, 문용민, 유봉선, 나영상, 배종수, "Ni 첨가량에 따른 중력 주조 Mg-Ni 합금의 수소화 반응 특성의 변화", 한국수소 및 신에너지학회 논문집, Vol. 15, No. 3, pp. 250-256
  12. 류재춘, 김영호, 박주식, 황갑진, 김종원, "MO/A$Al_2O_3-ZrO_2$(M=Ni 및 Cu) 혼합 금속 산화물의 환원-산화 특성", 한국수소 및 신에너지학회 논문집, Vol. 16, No. 1, pp. 49-57
  13. G. Munteanu, L. Ilieva, and D. Andreeva, "Kinetic parameters obtained from TPR data for $\alpha-Fe_2O_3$ and Au/$\alpha-Fe_2O_3$systems", Thermochim. Acta, Vol. 291, 1997, pp. 171-177 https://doi.org/10.1016/S0040-6031(96)03097-3
  14. A. Pineau, N. Kanari, and I. Gaballah, "Kinetics of reduction of iron oxides by $H_2$ Part I: low temperature reduction of hematite", Thermochim. Acta, Vol. 447, 2006, pp. 89-100 https://doi.org/10.1016/j.tca.2005.10.004
  15. J. Kaspar, P. Fornasiero, and M. Graziani, "Use of $CeO_2$-based oxides in the three-way catalysis", Catal. today, Vol. 50, 1999, pp. 285-298 https://doi.org/10.1016/S0920-5861(98)00510-0
  16. P. Fornasiero, R. Di Monte, G. Ranga Rao, J. Kaspar, S. Meriani, A. Trovarelli, and M. Graziani, "Rh-loaded $CeO_2-ZrO_2$ solid solutions as highly efficient oxygen exchangers: dependence of the reduction behavior and the oxygen storage capacity on the structural properties", J. Catal., Vol. 151, 1995, pp. 168-177 https://doi.org/10.1006/jcat.1995.1019
  17. S. Imamura, R. Hamada, Y. Saito, K. Hashimoto, and H. Jindai, "Decomposition of $N_2O$ on Rh/$CeO_2/ZrO_2$ composite catalyst", J. Mol. Catal. A: Chem., Vol. 139, 1999, pp. 55-62 https://doi.org/10.1016/S1381-1169(98)00188-5