Inelastic Transient Dynamic Analysis of Two- and Three-dimensional Stress Problems by Particular Integral Boundary Element Method

로터 시스템 회전운동의 정식화 및 해석

  • 윤성호 (금오공과대학교 기계공학부) ;
  • 임리민 (금오공과대학교 자동차공학과)
  • Published : 2008.10.30

Abstract

This paper indicates that the use of Euler angles lacks in its consistency and exactness of analysis when it was applied to incorporate the rotational equation of motion for rotor systems by previous researcher. Kinetic energy and angular velocity are different from case to case depending on the way of choosing Euler angles and thus only the linear system has been investigated even though the rotor system has a very nonlinear behavior. A new methodology is applied by using both spherical coordinate and quaternion in the rotor rotation to overcome weaknesses of Euler angles and shows its superiority It is found through numerical examples that the use of quaternion will be a more useful and valid tool to derive the numerical model of the rotor system.

본 논문은 로터 시스템의 디스크 회전운동을 표현하는데 있어 운동방정식을 통합하는 과정에서 기존 연구자들이 채택한 오일러 각 사용법이 일관성이 없음을 지적하였다. 기존 연구자들은 오일러 각 순서가 달라서 속도와 운동에너지도 달리 산정하였음은 물론, 운동방정식은 오직 선형 시스템만 취급해 왔다 이러한 오일러 각 사용법의 단점을 극복하기 위하여 회전운동을 더욱 단순하게 매개화할 수 있는 4원법(quaternion)과 구 좌표계를 적용하여 비선형 시스템을 도출하였다. 이를 바탕으로 수치해석을 통하여 기존 방법과 비교하여 제안한 방법의 신뢰성과 우수성을 보였다.

Keywords

References

  1. 윤성호, 이동현 (2005) 4원법과 유한요소를 이용한 유연체 동 역학의 해석기법, 한국전산구조공학회 논문집, 18(2), pp.141-149
  2. 윤성호, 임리민 (2008) 로터 시스템 회전운동 선형 및 비선형성, 한국전산구조공학회 학술대회 논문집, pp.190-196
  3. Al-Bedoor, B.O. (1999) Dynamic Model of Coupled Shaft Torsional and Blade Bending Deformations in Rotors, Computer Methods in Applied Mechanics and Engineering, 169, pp.177-190 https://doi.org/10.1016/S0045-7825(98)00184-4
  4. Chen L.W., Ku D.M. (1991) Finite Element Analysis of Natural Whirl Speed Rotating Shaft, Computers and Structures, 40, pp.741-747 https://doi.org/10.1016/0045-7949(91)90241-D
  5. Dooley J.R., McCarthy J.M. (1991) Spatial Rigid Body Dynamics using Dual Quaternion Components, Preceedings of the IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, pp.90-95
  6. Greenhill L.M,. Brickford J.D., Nelson, H.D. (1985) A Conical Beam Finite Element for Rotor Dynamic Analysis,' ASME Journal of Vibration and Acoustics, 107, pp.421-430 https://doi.org/10.1115/1.3269283
  7. Mohiuddin M.A., Khulief Y.A. (1994) Modal characteristics of rotors using a conical shaft finite element, Computer Methods in Applied Mechanics and Engineering, 115, pp.125-144 https://doi.org/10.1016/0045-7825(94)90191-0
  8. Nelson, H.D. (1980) A Finite Rotating Shaft Element using Timoshenko Beam Theory, Journal of Mechanical Engineering Design, 102, pp.793-803 https://doi.org/10.1115/1.3254824
  9. Nelson, H.D., McVaugh J.M. (1976) The Dynamics of Rotor-bearing Systems using Finite Element, ASME Journal of Engineering for Industry, 98, pp.593-600 https://doi.org/10.1115/1.3438942
  10. Zorzi E.S., Nelson, H.D. (1980) The Dynamics of Rotor-bearing Systems with Axial Torque-A Finite Element Approach, Journal of Mechanical Engineering Design, 102, pp.158-161 https://doi.org/10.1115/1.3254707