DOI QR코드

DOI QR Code

Erythrocyte Manganese Superoxide Dismutase Activity Indicates Training Intensity for Racing Horses

적혈구의 Manganese Superoxide Dismutase 활성은 경주마의 훈련강도를 나타낸다

  • Choi, Jun-Young (Department of Animal Life Sciences, Laboratory of Nutrition and Biotechnology, Konkuk University) ;
  • Park, In-Kyung (Department of Animal Life Sciences, Laboratory of Nutrition and Biotechnology, Konkuk University) ;
  • Im, Jin-Taek (Department of Animal Life Sciences, Laboratory of Nutrition and Biotechnology, Konkuk University) ;
  • Koh, Tae-Song (Department of Animal Life Sciences, Laboratory of Nutrition and Biotechnology, Konkuk University)
  • 최준영 (건국대학교 동물생명과학부 영양생명과학실험실) ;
  • 박인경 (건국대학교 동물생명과학부 영양생명과학실험실) ;
  • 임진택 (건국대학교 동물생명과학부 영양생명과학실험실) ;
  • 고태송 (건국대학교 동물생명과학부 영양생명과학실험실)
  • Published : 2008.08.01

Abstract

This study was aimed to investigate that training of horses is related with the activity of superoxide dismutase(SOD) in erythrocyte of racing horses. The SOD activity was assayed from erythrocyte of six Thoroubred horses having final stage of training, about 21 month-old, 474~509 kg body weight for race trainig. During 7 weeks of training period from 24th Sep. to 6th Nov, horses were bled very carefully 4 times at 1st Oct, 16th Oct, 30th Oct. and 6th Nov. As the training period passed, erythrocyte of the horses have gradually increased the MnSOD activity(p<0.05) and lowered the CuZnSOD activity. The plasma ceruloplasmin and peroxidase activities, and lactate levels were reduced gradually while peroxide and glucose levels gradually increased. The calculated oxygen consumption(Eaton, 1995) for training of horses were linearly related with the MnSOD activity(r=0.650, n=32) but negatively with CuZnSOD activity in erythrocyte and lactate levels(r=-349, n=32) in plasma. Also, peroxide levels in plasma of horses had positive relation with the MnSOD activity in erythrocyte(r=0.616, n=48). In conclusions, as the training is progressed, the raised MnSOD activity in erythrocytes and peroxide levels in plasma indicated balances between oxidant and antioxidants for the protection from ROS during race of horses. The results showed that the MnSOD activity in erythrocyte and peroxide levels in plasma may be used as marker for the intensity of training racing horses.

적혈구는 산소를 운반하는 세포이므로 본 연구는 마필의 훈련과정에 적혈구내 SOD 활성을 포함한 혈액내 항산화 효소계의 활성변화와 상호작용이 있는지 조사하였다. 마무리 훈련중인 경주 후보마 6두, 21월령, 체중 474kg~509kg을 2001년 9월 24일부터 11월 13일 경주후보 발주 검사시 까지 7주의 훈련기간 조사하였다. 마필에서 10월 1일, 10월 16일, 10월 30일, 및 11월 6일 네 번 각각 채혈되었고, 아침 훈련후 약 3시간의 휴식후 일정시간에 마필이 스트레스를 느끼지 않게 매우 조심하여 헤파린 처리 Vacutainer로 약 5~10mL가 채혈 되었다. 혈액은 적혈구의 MnSOD와 CuZnSOD의 활성, 혈장의 Ceruloplasmin 활성과 그리고 혈장의 과산화물과 과산화물 분해효소 활성 및 포도당과 젖산의 농도 측정에 사용되었다. 훈련기간의 경과에 따라, 마필 적혈구의 MnSOD 활성과 혈장의 과산화물 수준은 점차 유의하게 높아지고, CuZnSOD 활성과 혈장의 Ceruloplasmin과 과산화물 분해효소의 활성은 점차 낮아졌다. 마필의 계산된 산소 소비량의 증가에 따라 MnSOD 활성은 직선적으로 증가하나(r=650, n=32) CuZnSOD 활성은 감소하였다. 그리고 적혈구의 MnSOD 활성은 혈장의 과산화물 함량과 양의 상관관계(r=616, n=48)를 그리고 혈장 젖산농도와 부의 상관관계를 나타내었다. 본 성적은 훈련량이 많아짐에 따라 과산화물은 축적되나, 적혈구의 MnSOD 활성이 높아지는 것은 혈액의 항산화계와 산화계의 균형을 위한 적응을 나타내고 있다. 적혈구의 SOD 활성과 혈장의 과산화물함량은 혈장의 젖산농도와 함께 마필의 훈련정도 평가의 지표로 사용할 수 있다는 것을 보였다.

Keywords

References

  1. Bayly, W. M., Grant, B. D. and Pearson, R. C. 1987. Lactate concentrations in Thoroughbred horses following maximal exercise under field conditions. In: Equine Excercise Physiology 2. Eds. J. R. Gillespie and N. E. Robinson, ICEEP Publicatins. Davis, California. pp 427-437
  2. Bernabucci, U., Ronchi, B., Lacetera, N. and Nardone, A. 2002. Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season. J. Dairy Science, 85(9):2173-2179 https://doi.org/10.3168/jds.S0022-0302(02)74296-3
  3. Eaton, M. D., Evans, D. L., Hodgson, D. R. and Rose, R. J. 1995. Maximal accumulated oxigen deficit in Thoroubred horses. J. App. Physiol. 78(4):1564-1568 https://doi.org/10.1152/jappl.1995.78.4.1564
  4. Elosua, R., Molina, L., Fito, M., Arquer, A., Sanchez-Quesada, J. L., Covas, M. I., Ordonez- Llanos, J. and Marrugat. 2003. Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women. Atherosclerosis (Shannon, Ireland), 167(2):327-334 https://doi.org/10.1016/S0021-9150(03)00018-2
  5. Halliwell, B., John, M. and Gutteridge, C. 2000. Exercise : an oxidative stress. In 'Free Radicals in Biology and Medicine' Third Ed. Oxford University press, New York
  6. Hamilton, K. L., Powers, S. K., Sugiura, T., Kim, Sunjoo, Lennon, S., Tumer, N. and Mehta, J. L. 2001. Short-term exercise training can improve myocardial tolerance to I/R without elevation in heat shock proteins. American J. Physiology, 281(3, Pt. 2):H1346-H1352
  7. Husain, K. 2003. Interaction of physical training and chronic nitroglycerin treatment on blood pressure, nitric oxide, and oxidants/antioxidants in the rat heart. Pharmacological Research, 48(3):253-261 https://doi.org/10.1016/S1043-6618(03)00150-6
  8. Koh, T. S., Peng, R. K. and Klasing, K. C. 1996. Dietary copper level affects copper metabolism during lipopolysaccharide-induced immunological stress in chicks. Poultry Sci., 75(7):867-872 https://doi.org/10.3382/ps.0750867
  9. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1954. Protein mesurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275
  10. Marklund, S. and Marklund, G. 1974. Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J. Biochem, 47:469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  11. McCord, J. M. and Fridovich, I. 1969. Superoxide dismutase. An enzyme function for erythrocuprein (hemocuperin). J. Biol. Chem. 244:6049-6055
  12. Pansarasa, O., D'Antona, G., Gualea, M. R., Marzani, B., Pellegrino, M. A. and Marzatico, F. 2002. "Oxidative stress":effects of mild endurance training and testosterone treatment on rat gastrocnemius muscle. European Journal of Applied Physiology, 87(6):550-555 https://doi.org/10.1007/s00421-002-0668-3
  13. Prohaska, J. R. 1983. Changes in tissue growth, concentration of copper, iron, cytochrome oxidase and superoxide dismutase subsequent to dietary or genetic copper deficiency in mice. J. Nutr. 113:2148-2158
  14. Rose, R. J., Hdgson, D. R., Kelso, T. B., NacCuucheon, L. J., Reid, T. A., Bayly, W. M. and Gollnick, P. D. 1988. Maximum $O_2$ uptake, debt and deficit, and muscle metabolites of Thouroubred horses. J. Appl. Physiol. 64(2):781-783 https://doi.org/10.1152/jappl.1988.64.2.781
  15. SAS Institute Inc. 1990. SAS/STAT User's guide version 6, fourth ed. volume 2, Cary NC : SAS Institute Inc., 891 pp
  16. Tatzber, F., Griebenow, S., Wonisxh, W. and Winker, R. 2003. Dual method for the determination of peroxidase activity and total peroxidesiodide leads to a significant increase of peroxidase activity in human sera. Analytical Biochemistry 316:147-153 https://doi.org/10.1016/S0003-2697(02)00652-8
  17. Vani, M., Reddy, G. P., Reddy, G. R. and Thyagaraju, K. R. 1990. Glutathione-S-transferase, superoxide dismutase, xanthine oxidase, catalase, glutathione peroxidase and lipid peroxidation in the liver of exercised rats. Biochemistry International, 21(1):17-26
  18. 한국마사회. 1997. 조교사 면허시험 교재(상, 하). 한국마사회(韓國馬事會:Korea Racing Association) 발행 (비매품)
  19. 이혜정, 박인경, 임진택, 최도열, 최준영, 최종배, 이홍구, 최윤재, 고태송. 2005. 타고난 면역 반응이 활성화한 육계 병아리의 항산화 균형에 미치는 사료 중 미역제품 수준의 영향. 동물자원과학회지 47(1):29-38 https://doi.org/10.5187/JAST.2005.47.1.029