DOI QR코드

DOI QR Code

Characterization of Lactobacilli Isolated from Chicken Ceca as Probiotics

닭의 맹장에서 분리된 유산균의 생균제적 특성

  • Published : 2008.08.01

Abstract

This experiment was conducted to investigate enzyme activity, antimicrobial activity, and antibiotics susceptibility of Lactobacilli strain(Lactobacillus reuteri BLA5, Lactobacillus crispatus BLA7, Lactobacillus reuteri BLA9, Lactobacillus amylovorus LLA7, Lactobacillus crispatus LLA9, Lactobacillus vaginalis LLA11) isolated from chicken ceca and were selected by organic acid synthesis, acid tolerance, bile salt tolerance. The enzymes activities were different among strains of Lactobacilli. The amylase activity and lipase activity of Lactobacillus were high but cellulase activity and protease activity of that were low. Lactobacillus culture showed high antimicrobial activity against E. coli but low antimicrobial activity against Salmonella. The inhibitory factor of Lactobacilli isolated from chickens’ cecum on E. coli was low pH by organic acid. All of Lactobacillus isolated from chicken’s cecum were susceptible to ampicillin and amoxicillin but weren’t susceptible at the optimum level of feed additive antibiotics(virginiamycin and salinomycin).

본 연구는 육계 및 산란계 맹장에서 분리하여 유기산 생성 능력, 내산성, 내담즙성 및 성장특성을 토대로 선발된 유산균 6종(Lacto- bacillus reuteri BLA5, Lactobacillus crispatus avibro1, Lactobacillus reuteri avibro2, Lacto- bacillus amylovorus LLA7, Lactobacillus crispatus avihen1, Lactobacillus vaginalis avihen2)의 효소, 항균 활성 및 항생제 감수성을 조사하여 생균제로서의 이용 가치를 구명하고자 실시하였다. 육계 및 산란계 맹장 유래 유산균은 효소 활성에 있어서는 균주마다 차이가 있었으나, 일반적으로 amylase와 lipase 활성이 강한 것으로 나타났고 반면, cellulase 및 protease의 활성은 약한 것으로 나타났다. 유산균 배양액은 병원성 E. coli에 대하여 강한 항균 활성을 보였으며, 주요 억제 요인으로는 유기산 분비에 의한 pH 저하에 의한 것으로 나타났다. 병원성 Salmo- nella에 대해서는 유산균 배양액의 억제성이 약한 것으로 나타났다. 유산균은 치료용 항생제로 이용되는 ampicillin과 amoxicillin에 대해서는 높은 감수성을 보인 반면 사료용 항생제(virginiamycin 및 salinomycin)의 경우 정상적인 첨가 수준에서는 영향을 받지 않았다.

Keywords

References

  1. Afrin, R., Haruyama, T., Yanagida, Y., Kobatake, E. and Aizawa, M. 2000. Catalytic activity of Teflon particle-immobilized protease in aqueous solution. J. Molecular Catalysis 9:259-267 https://doi.org/10.1016/S1381-1177(99)00104-6
  2. Barrow, P. A., Brooker, B. E., Fuller, R. and Newport, M. J. 1980. The attachment of bacteria to the epithelium of the pig and its importance in the microecology of the intestine. J. Appl. Bact. 48:147 https://doi.org/10.1111/j.1365-2672.1980.tb05216.x
  3. Bauer, A. W., Kirby, W. M. J. C., Sherris, J. C. and Turck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45:493-496 https://doi.org/10.1093/ajcp/45.4_ts.493
  4. Bongaerts, G., Severijne, R. and Timmerman, H. 2005. Effect of antibiotics, prebiotics and Probiotics in treatment for hepatic encephalopathy. Med. Hypotheses. 64:64-68 https://doi.org/10.1016/j.mehy.2004.07.029
  5. Dunham, H. J., William, C., Edens, F. W., Casas, I. A. and Dobrogosz, W. J. 1993. Lactobacillus reuteri immunomodulation of stressor-associated disease in newly hatched chickens and turkeys. Poult. Sci. 72(Suppl 1):103(abstract)
  6. Fuller, R. 1973. Ecological studies on the Lactobacillus flora associated with the crop epithelium of the fowl. J. Appl. Bacteriol. 36:131-139 https://doi.org/10.1111/j.1365-2672.1973.tb04080.x
  7. Fuller, R. 1975. Nature of the determinant responsible for the adhesion of lactobacilli to chicken crop epithelial cells. Fournal of General Microbiology. 87:245-250 https://doi.org/10.1099/00221287-87-2-245
  8. Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66:365-378 https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  9. Gibson, G. R. and Fuller, R. 2000. Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use. J. Nutr. 130:391-395
  10. Gilliland, S. E. 1979. Beneficial interrelationships between certain micro-organisms and humans: Candidate micro-organisms for use as dietary adjuncts. J. Food Protect. 42:164 https://doi.org/10.4315/0362-028X-42.2.164
  11. Hernandez, F., Madrid, J., Garcia, V., Orengo, J. and Megias. M. D. 2004. Influence of two plant extracts on broilers performance, digestibility, and organ size. Poult. Sci. 83:169-174 https://doi.org/10.1093/ps/83.2.169
  12. Jennson, B. 1993. The possibility of manipulation of microbial activity in the digestive tract of monogastric animals. Proceedings of the 44th annual meeting for animal production. p 313
  13. Jin, L. Z., Ho, Y. W., Abdullah, N., Ali, M. A. and Jalaudin, S. 1996. Antagonistic effects of intestinal Lactobacillus isolates on pathogens of chicken. Letters in Applied Microbiology. 23:67-71 https://doi.org/10.1111/j.1472-765X.1996.tb00032.x
  14. Klaenhammer, T. R. 1988. Bacteriocins of lactic acid bacteria. Biochimie 70:337-349 https://doi.org/10.1016/0300-9084(88)90206-4
  15. Miller, G. L. 1959. Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Anal. Chem. 31:426-428 https://doi.org/10.1021/ac60147a030
  16. Mohan, B., Kadirvel, R., Natarajan, A. and Bhaskaran, M. 1996. Effect of probiotic supplementation on growth nitrogen utilization and serum cholesterol in broilers. Br. Poult. Sci. 37:395-401 https://doi.org/10.1080/00071669608417870
  17. Morishita, Y., Fuller, R. and Coates, M. E. 1982. Influence of dietary lactose on the gut flora of chicks. Br. Poult. Scie. 23:349-359 https://doi.org/10.1080/00071688208447968
  18. Nurmi, E. and Rantala, M. 1973. New aspects of Salmonella infection in broiler production. Nature. 241:210-211 https://doi.org/10.1038/241210a0
  19. Ransac, S., Blaauw, M., Lesuisse, E., Schanck, K., Colson, C. and Dijkstra, B. W. 1994. Crystalliza subtilis. J. Molecular Biology. 238:857-859 https://doi.org/10.1006/jmbi.1994.1342
  20. Rubio, L. A., Brenes, A., Setien tion and Preliminary X-ray Analysis of a Lipase from Bacillus, I., de la Asuncion, G., Duran, N. and Cutuli, M. T. 1998. Lactobacilli counts in crop ileum and caecum of growing broiler chickens fed on practical diets containing whole or dehulled sweet lupin Lupinus angustifolius seed meal. Br. Poult. Sci. 39:354-359 https://doi.org/10.1080/00071669888890
  21. Spencer, R. J. and Chesson, A. 1994. The effect of Lactobacillus spp. on the attachment of enterotoxigenic Escherichia coli to isolated porcine enterocytes. Fournal of Applied Bacteriology. 77:215-220 https://doi.org/10.1111/j.1365-2672.1994.tb03066.x
  22. Tagg, J. R., Dajani, A. S. and Wannamaker, L. W. 1976. Bacteriocins of Gram-positive bacteria. Bacteriological Reviews 40:722-756
  23. Watkins, B. A., Miller, B. F. and Neil, D. H. 1982. In vivo effects of Lactobacillus acidophilus against pathogenic Escherichia coli in gnotobiotic chicks. Poult. Sci. 61:1298-1308 https://doi.org/10.3382/ps.0611298
  24. Watkins, B. A. and Kratzer, F. H. 1983. Effect of oral dosing of Lactobacillus strains on gut colonization and liver biotin in broiler chicks. Poult. Sci. 62:2088-2094 https://doi.org/10.3382/ps.0622088
  25. White, F., Wenham, G., Sharman, G. A., Jones, A. S., Rattray, E. A. and McDonald, I. 1969. Stomach function in relation to a scour syndrome in the piglet. Br. J. Nutr. 23:847-858 https://doi.org/10.1079/BJN19690095