DOI QR코드

DOI QR Code

The electrical properties of PLZT thin films on ITO coated glass with various post-annealing temperature

ITO 기판에 제작된 PLZT 박막의 후열처리 온도에 따른 전기적 특성평가

  • Cha, Won-Hyo (School of Materials Science and Engineering, Pusan National University) ;
  • Youn, Ji-Eon (School of Materials Science and Engineering, Pusan National University) ;
  • Hwang, Dong-Hyun (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Chul-Su (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, In-Seok (School of Materials Science and Engineering, Pusan National University) ;
  • Sona, Young-Guk (School of Materials Science and Engineering, Pusan National University)
  • 차원효 (부산대학교 공과대학 재료공학부) ;
  • 윤지언 (부산대학교 공과대학 재료공학부) ;
  • 황동현 (부산대학교 공과대학 재료공학부) ;
  • 이철수 (부산대학교 공과대학 재료공학부) ;
  • 이인석 (부산대학교 공과대학 재료공학부) ;
  • 손영국 (부산대학교 공과대학 재료공학부)
  • Published : 2008.01.30

Abstract

Lanthanum modified lead zirconate titanate ($Pb_{1.1}La_{0.08}Zr_{0.65}Ti_{0.35}O_3$) thin films were fabricated on indium doped tin oxide (ITO)-coated glass substrate by R.F magnetron sputtering method. The thin films were deposited at $500^{\circ}C$ and post-annealed with various temperature ($550-750^{\circ}C$) by rapid thermal annealing technique. The structure and morphology of the films were characterized with X-ray diffraction (XRD) and atomic force microscopy (AFM) respectively. The hysteresis loops and fatigue properties of thin films were measured by precision material analyzer. As the annealing temperature was increased, the remnant polarization value was increased from $10.6{\mu}C/cm^2$ to $31.4{\mu}C/cm^2$, and coercive field was reduced from 79.9 kV/cm to 60.9 kV/cm. As a result of polarization endurance analysis, the remnant polarization of PLZT thin films annealed at $700^{\circ}C$ was decreased 15% after $10^9$ switching cycles using 1MHz square wave form at ${\pm}5V$.

R.F 마그네트론 스퍼터링 방법을 이용하여 Indium tin oxide(ITO)가 증착된 유리기판 위에 PLZT ($Pb_{1.1}La_{0.08}Zr_{0.65}Ti_{0.35}O_3$) 박막을 제작하였다. 기판온도를 $500^{\circ}C$로 고정하여 증착한 후 급속열처리 방법으로 다양한 온도 ($550-750^{\circ}C$)에서 후열처리 하였다. 후열처리온도의 변화에 따른 PLZT 박막의 결정학적 특성을 X선 회절법을 통하여 분석하였고 원자간력 현미경을 이용하여 박막의 표면 상태를 관찰하였다. 또한 precision material analyzer 을 이용하여 분극이력곡선과 피로특성을 측정하였다. 후 열처리 온도가 증가함에 따라 잔류분극 값(Pr)은 $10.6{\mu}C/cm^2$ 에서 $31.4{\mu}C/cm^2$로 증가하였으며 항전계(Ec)는 79.9 kV/cm에서 60.9 kV/cm로 감소하는 경향을 보였다. 또한 피로특성의 경우 1MHz 주파수에서 ${\pm}5V$의 square wave를 인가하여 측정한 결과 $700^{\circ}C$에서 후열처리한 시편의 경우 $10^9$회 이상의 분극반전을 거듭하였을 때 분극값이 15% 감소하는 결과를 나타내었다.

Keywords

References

  1. Bulletin of the Korea Institute of Electrical and Electronic Material Engineering 13, 33 (2000)
  2. J.F. Scott, C.A. Paz de Araujo, Science 246, 1400 (1989) https://doi.org/10.1126/science.246.4936.1400
  3. R. Ramesh, J. Lee, T. Sands, V.G. Keramidas, O. Auciello, Appl. Phys. Lett. 64, 2511 (1994) https://doi.org/10.1063/1.111557
  4. M. Dawber, J.F. Scott, Appl. Phys. Lett. 76, 1060 (2000) https://doi.org/10.1063/1.125938
  5. W.S. Kim, J.W. Kim, H.H. Park, H.N. Lee, Jpn. J. Appl. Phys. 37, 7097 (2000)
  6. K.B. Lee, B.R. Rhee, C.K. Lee, Appl. Phys. Lett. 79, 821 (2001) https://doi.org/10.1063/1.1391226
  7. T. Nakamura, Y. Nakao, A. Kamisawa, H. Takasu, Appl. Phys. Lett. 65, 1522 (1994) https://doi.org/10.1063/1.112031
  8. G.J. Norga, L. Fe', D.J. Wouters, H.E. Maes, Appl. Phys. Lett. 76, 1318 (2000) https://doi.org/10.1063/1.126021
  9. G.S. Wang, X.J. Meng, J.L. Sun, Z.Q. Lai, J. Yu, S.L. Guo, J.G. Cheng, J. Tang, J.H. Chu, Appl. Phys. Lett. 79, 3476 (2001) https://doi.org/10.1063/1.1419234
  10. M.S. Chen, T.B. Wu, J.M. Wu, Appl. Phys. Lett. 68, 1430 (1996) https://doi.org/10.1063/1.116103
  11. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb01840.x
  12. G.H. Haertling, J. Am. Ceram. Soc. 54(6), 303 (1971) https://doi.org/10.1111/j.1151-2916.1971.tb12296.x
  13. C.V.R. Vasant Kumar, M. Sayer, R. Pascual, D.T. Amm, Z. Wu, D.M. Swanston, Appl. Phys. Lett. 58, 1161 (1991) https://doi.org/10.1063/1.104351
  14. H.-W. Choi, Y.S. Park, J. Dougherty, N.W. Jang, Ch.-Y. Park, J. Mater. Sci. 35, 1475 (2000) https://doi.org/10.1023/A:1004772611000
  15. M. Gaidi, A. Amassian, M. Chaker, M. Kulishov, and L. Martinu, Applied Surface Science 226, 347 (2004) https://doi.org/10.1016/j.apsusc.2003.10.037
  16. G. Leclerc, B. Domenge's, G. Poullain, and R. Bouregba, Applied Surface Science 253, 1143 (2006) https://doi.org/10.1016/j.apsusc.2006.01.048
  17. K. Bouayad, S. Sayouri, T. Lamcharfil, M. Ezzejari, D. Mezzane, L. Hajji, A. El Ghazouali, M. Filalil, P. Dieudonn'e, and M. Rhouta, Physica A 358, 175 (2005) https://doi.org/10.1016/j.physa.2005.06.021
  18. V. Fuflyigin, A. Osinsky, F. Wang, P. Vakhutinsky, and P. Norris, Appl. Phys. Lett. 76, 1612 (2000) https://doi.org/10.1063/1.126112