DOI QR코드

DOI QR Code

A Comparison Study on Back-Propagation Neural Network and Support Vector Machines for the Image Classification Problems

영상분류문제를 위한 역전파 신경망과 Support Vector Machines의 비교 연구

  • Seo, Kwang-Kyu (Dept. of Industrial Information and System Engineering, Sangmyung University)
  • Published : 2008.12.31

Abstract

This paper explores the classification performance of applying to support vector machines (SVMs) for the image classification problems. In this study, we extract the color, texture and shape features of natural images and compare the performance of image classification using each individual feature and integrated features. The experiment results show that classification accuracy on the basis of color feature is better than that based on texture and shape features and the results of the integrating features also provides a better and more robust performance than individual feature. In additions, we show that the proposed classifier of SVM based approach outperforms BPNN to corporate the image classification problems.

본 논문은 영상 분류 문제를 위한 support vector machines (SVMs)의 적용을 통한 분류의 성능을 다루고 있다. 본 연구에서는 영상 분류 문제에서 자연영상을 대상으로 색상, 질감, 형상 특징벡터를 추출하고, 각각의 특징벡터와 이들을 결합한 특징벡터를 사용하여 역전파 신경망과 SVM 기반의 방법을 적용하여 영상 분류의 정확성을 비교한다. 실험결과는 각각의 특징벡터중에는 색상 특징벡터값을 이용한 영상 분류가 그리고 각각의 특징벡터보다는 이들을 결합한 특징벡터를 이용한 영상 분류가 보다 우수함을 보여준다. 그리고 알고리즘간의 비교에서는 정확성과 일반화성능 측면에서 역전파 신경망보다 SVMs이 우수함을 보였다.

Keywords

References

  1. Eakins, P. J., "Towards Intelligent image retrieval.", Pattern Recognition, vol. 35, pp. 3-14, 2002. https://doi.org/10.1016/S0031-3203(01)00038-3
  2. Jain, A. K., Murty, M. N. and Flynn, P. J., "Data clustering: a review", ACM Computing Surveys, vol. 31(3), pp.264-323, 1999. https://doi.org/10.1145/331499.331504
  3. Fournier, J., Cord, M., Philipp-Foliguet, S., "Back-propagation Algorithm for Relevance Feedback in Image retrieval", IEEE International Conference in Image Processing, Vol. 1, pp. 686-689, 2001. https://doi.org/10.1109/ICIP.2001.959138
  4. Koskela, M., Laaksonen, J., and Oja, E., "Use of Image Subset Features in Image Retrieval with Self-Organizing Maps", LNCS, Vol. 3115, pp.508-516, 2004.
  5. Park, S.-S., Seo, K.-K., Jang, D.-S., "Expert system based on artificial neural networks for content-based image retrieval", Expert Systems with Applications, Vol.29(3), pp. 589-597, 2005. https://doi.org/10.1016/j.eswa.2005.04.027
  6. Berman, A. L., Shapiro, G.., "Efficient image retrieval with multiple distance measures", Proceedings of SPIE, Storage and Retrieval for Image and Video Databases V, Vol. 3022, pp. 12-21, 1997
  7. Jain, A. K., Vailaya, A., "Image retrieval using color and shape", Pattern Recognition, Vol. 29, pp. 1233-1244, 1996. https://doi.org/10.1016/0031-3203(95)00160-3
  8. Haralick, R. M., Shanmugam, K., Dinstein, I., "Texture features for image classification", IEEE Trans on Sys, Man, and Cyb, SMC-3(6), pp. 610-621, 1973. https://doi.org/10.1109/TSMC.1973.4309314
  9. Jain, A.K, Vailaya, A., "Shape-based retrieval: a case study with trademark image databases", Pattern Recognition, Vol. 31, pp. 1369-1390, 1998. https://doi.org/10.1016/S0031-3203(97)00131-3
  10. Vapnik, V., Statistical learning theory. New York: Springer, 1998.