Abstract
In this paper, to bring under robust and accurate control of auto-equipment systems which disturbance, parameter alteration of system, uncertainty and so forth exist, neural network controller called dynamic neural processor(DNP) is designed In order to perform a elaborate task like as assembly, manufacturing and so forth of components, tracking control on the trajectory of power coming in contact with a target as well as tracking control on the movement course trajectory of end-effector is indispensable. Also, the learning architecture to compute inverse kinematic coordinates transformations in the Plants of auto-equipment systems is developed and the example that DNP can be used is explained. The architecture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simulations are provided to demonstrate the effectiveness of the proposed learning method using the DNP.
본 논문에서는 외란이나 시스템의 파라미터 변동 및 불확실성 등이 존재하는 자동화 설비시스템을 강인하고 정밀하게 제어할 수 있도록 하기 위해 동적 신경망 처리기(DNP)인 신경망 제어기를 설계하였다. 자동화 설비시스템에서 부품의 조립, 가공 등 복잡하고 정교한 임무를 수행시키기 위해서는 end-effector의 이동경로 궤적에 대한 추적제어 뿐만 아니라 목표물에 대하여 접촉하는 힘의 궤적에 대한 추적 제어가 필수적이다. 또한 자동화 설비시스템에서 플랜트의 역기구학적인 좌표변환을 계산하기 위한 학습구조를 개발하였으며, DNP가 이용될 수 있는 예를 설명하였다. 제안된 동적 신경망인 DNP의 구조와 학습 알고리즘을 제시하고 컴퓨터 모의실험을 통해 학습 성능을 증명하였다.