DOI QR코드

DOI QR Code

SELECTIVE DETECTION OF VIABLE ENTEROCOCCUS FAECALIS USING PROPIDIUM MONOAZIDE IN COMBINATION WITH REAL-TIME PCR

Propidium monoazide와 real-time PCR을 이용한 살아있는 Enterococcus faecalis의 선택적인 검출

  • Kim, Sin-Young (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Lee, Seung-Jong (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Kim, Eui-Seong (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Seo, Deog-Gyu (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Song, Yoon-Jung (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Jung, Il-Young (Department of Conservative Dentistry, College of Dentistry, Yonsei University)
  • 김신영 (연세대학교 치과대학 치과보존학교실) ;
  • 이승종 (연세대학교 치과대학 치과보존학교실) ;
  • 김의성 (연세대학교 치과대학 치과보존학교실) ;
  • 서덕규 (연세대학교 치과대학 치과보존학교실) ;
  • 송윤정 (연세대학교 치과대학 치과보존학교실) ;
  • 정일영 (연세대학교 치과대학 치과보존학교실)
  • Published : 2008.11.30

Abstract

Polymerase chain reaction (PCR) can detect bacteria more rapidly than conventional plate counting. However DNA-based assays cannot distinguish between viable and dead cells due to persistence of DNA after cells have lost their vitality. Recently, propidium monoazide (PMA) treatment has been introduced. The purpose of this study is to evaluate the applicability of the PMA treatment and real-time PCR method for cell counting in comparison with plate counting and to evaluate the antibacterial efficacy of 2% CHX on E. faecalis using PMA treatment in combination with real-time PCR. Firstly, to elucidate the relationship between the proportion of viable cells and the real-time PCR signals after PMA treatment, mixtures with different ratios of viable and dead cells were used. Secondly, relative difference of viable cells using PMA treatment in combination with real-time PCR was compared with CFU by plate counting. Lastly, antibacterial efficacy of 2% CHX on E. faecalis was measured using PMA treatment in combination with real-time PCR. The results were as follows : 1. Ct value increased with decreasing proportion of viable E. faecalis. 2. There was correlation between viable cells measured by real-time PCR after PMA treatment and CFU by plate counting until Optical density (OD) value remains under 1.0. However, viable cells measured by real-time PCR after PMA treatment have decreased at 1.5 of OD value while CFU kept increasing. 3. Relative difference of viable E. faecalis decreased more after longer application of 2% CHX.

세균의 검출에 있어서 polymerase chain reaction (PCR) 방법은 기존의 plate counting과 달리 빠르게 세균을 검출할 수 있다. 하지만 세균이 죽은 후에도 DNA는 장기간 존재할 수 있기 때문에, DNA에 기초한 분석은 살아있는 세균과 죽은 세균을 구분할 수 없다. 최근에 DNA extraction전에 propidium monoazide (PMA)를 처리하여 살아있는 세균만 선택적으로 검출하는 방법이 제시되었다. PMA는 손상된 세포막만 통과하여 죽은 세포의 DNA와 빛 노출 하에서 결합하여 PCR이 증폭되는 것을 막는다. Enterococcus faecalis는 근관치료의 실패에 있어서 중요한 원인이 되는 세균으로 제시되어 왔다. 그리고 chlorhexidine (CHX)은 E. faecalis의 제거에 있어서 효과적인 약제임이 밝혀졌다. 이번 실험의 목적은 세균 수의 측정에 있어서, PMA 처리와 real-time PCR 방법의 적용 가능성을 기존의 plate counting과 비교하여 알아보는 것이다. 또한 E. faecalis에 대한 2% CHX의 살균 효과를 PMA 처리 후 real-time PCR 방법을 사용하여 알아보는 것이다. 실험 방법으로 먼저 살아있는 세균과 죽은 세균을 다른 비율로 섞어서 PMA를 처리한 후 real-time PCR을 시행하여 PMA가 빛 노출 하에서 죽은 세균의 DNA와 결합하는 효과를 나타내는지 알아보았다. 다음으로 PMA 처리 후 realtime PCR 방법을 이용하여 살아있는 세균의 양을 측정한 것을 plate counting으로 얻은 CFU와 비교하였다. 마지막으로 2% CHX의 처리시간을 다르게 하였을 때 E. faecalis에 대한 살균 효과를 PMA 처리 후 real-time PCR 방법을 사용하여 알아보았다. 실험 결과로 살아있는 E. faecalis의 비율이 감소할수록 Ct value는 증가하였다. 그리고 PMA 처리 후 real-time PCR 방법을 이용하여 세균의 양을 측정한 것과 plate counting으로 얻은 CFU 사이에는 Optical density (OD) 값이 1.0일 때까지는 상관관계가 있었다. 하지만 OD 값이 1.5일 때는, PMA를 처리한 후 real-time PCR을 시행했을 때 측정된 살아있는 세균의 양이 감소하였음에 반해서 plate counting에 의한 CFU는 계속 증가하였다. 마지막으로 2% CHX을 오래 적용할수록 살아있는 E. faecalis의 상대적인 양이 감소하는 것을 PMA 처리와 real-time PCR 방법을 이용해 확인하였다.

Keywords

References

  1. Williams JM, Trope M, Caplan DJ, Shugars DC. Detection and quantitation of E. faecalis by real-time PCR (qPCR), reverse transcription-PCR (RT-PCR), and cultivation during endodontic treatment. J Endod 32:715-21, 2006 https://doi.org/10.1016/j.joen.2006.02.031
  2. Young G, Turner S, Davies JK, Sundqvist G, Figdor D. Bacterial DNA persists for extended periods after cell death. J Endod 33:1417-20, 2007 https://doi.org/10.1016/j.joen.2007.09.002
  3. Josephson KL, Gerba CP, and Pepper IL. Polymerase chain reaction detection of nonviable bacterial pathogens. Appl Environ Microbiol 59:3513-5, 1993
  4. Nocker A, Sossa-Fernandez P, Burr MD, Camper AK. Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol 73:5111-7, 2007 https://doi.org/10.1128/AEM.02987-06
  5. Nocker A, Sossa KE, Camper AK. Molecular monitoring of disinfection efficacy using propidium monoazide in combination with quantitative PCR. J Microbiol Methods 70:252-60, 2007 https://doi.org/10.1016/j.mimet.2007.04.014
  6. Molander A, Reit C, Dahlen G, Kvist T. Microbiological status of root-filled teeth with apical periodontitis. Int Endod J 31:1-7, 1998 https://doi.org/10.1046/j.1365-2591.1998.t01-1-00111.x
  7. Moller AJ. Microbiological examination of root canals and periapical tissues of human teeth. Methodological studies. Odontol Tidskr 74:1-380, 1966
  8. Sundqvist G, Figdor D, Persson S, Sjogren U. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85:86-93, 1998 https://doi.org/10.1016/S1079-2104(98)90404-8
  9. Rocas IN, Jung IY, Lee CY, Siqueira JF Jr. Polymerase chain reaction identification of microorganisms in previously root-filled teeth in a South Korean population. J Endod 30:504-8, 2004 https://doi.org/10.1097/00004770-200407000-00011
  10. Haapasalo M, Orstavik D. In vitro infection and disinfection of dentinal tubules. J Dent Res 66:1375-9, 1987 https://doi.org/10.1177/00220345870660081801
  11. Wilson M. Susceptibility of oral bacterial biofilms to antimicrobial agent. J Med Microbiol 44:79-87, 1996 https://doi.org/10.1099/00222615-44-2-79
  12. Mah TF, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34-9, 2001 https://doi.org/10.1016/S0966-842X(00)01913-2
  13. Lima KC, Fava LR, Siqueira JF Jr. Susceptibilities of Enterococcus faecalis biofilms to some antimicrobial medications. J Endod 27:616-9, 2001 https://doi.org/10.1097/00004770-200110000-00004
  14. Fouad AF, Kum KY, Clawson ML, Barry J, Abenoja C, Zhu Q, Caimano M, Radolf JD. Molecular characterization of the presence of Eubacterium spp. and Streptococcus spp. in endodontic infections. Oral Microbiol Immunol 18:249-55, 2003 https://doi.org/10.1034/j.1399-302X.2003.00077.x
  15. Abdullah M, Ng YL, Gulabivala K, Moles DR, Spratt DA. Susceptibilities of two Enterococcus faecalis phenotypes to root canal medications. J Endod 31:30-6, 2005 https://doi.org/10.1097/01.don.0000136205.80807.5a
  16. Portenier I, Waltimo T, Orstavik D, Haapasalo M. The susceptibility of starved, stationary phase, and growing cells of Enterococcus faecalis to endodontic medicaments. J Endod 31:380-6, 2005 https://doi.org/10.1097/01.don.0000145421.84121.c8
  17. Zamany A, Spangberg LS. An effective method of inactivating chlorhexidine. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93:617-20, 2002 https://doi.org/10.1067/moe.2002.122346
  18. Nocker A, Cheung CY, Camper AK. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 67:310-20, 2006 https://doi.org/10.1016/j.mimet.2006.04.015
  19. Nocker A, Camper AK. Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide. Appl Environ Microbiol 72:1997-2004, 2006 https://doi.org/10.1128/AEM.72.3.1997-2004.2006
  20. De Vos MM, Nelis HJ. An improved method for the selective detection of fungi in hospital waters by solid phase cytometry. J Microbiol Methods 67:557-565, 2006 https://doi.org/10.1016/j.mimet.2006.05.020
  21. Heling I, Sommer M, Steinberg D, Friedman M, Sela MN. Microbiological evaluation of the efficacy of chlorhexidine in a sustained-release device for dentine sterilization. Int Endod J 25:15-9, 1992 https://doi.org/10.1111/j.1365-2591.1992.tb00943.x