DOI QR코드

DOI QR Code

완충 용액의 유산 농도와 pH가 법랑질의 재광화에 미치는 영향

THE EFFECT OF LACTIC ACID CONCENTRATION AND pH OF LACTIC ACID BUFFER SOLUTIONS ON ENAMEL REMINERALIZATION

  • 권중원 (연세대학교 대학원 치의학과 치과보존학교실) ;
  • 서덕규 (연세대학교 대학원 치의학과 치과보존학교실) ;
  • 송윤정 (연세대학교 대학원 치의학과 치과보존학교실) ;
  • 이윤 (연세대학교 대학원 치의학과 치과보존학교실) ;
  • 이찬영 (연세대학교 대학원 치의학과 치과보존학교실)
  • Kwon, Jung-Won (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Suh, Duk-Gyu (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Song, Yun-Jung (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Lee, Yun (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Lee, Chan-Young (Department of Conservative Dentistry, College of Dentistry, Yonsei University)
  • 발행 : 2008.11.30

초록

본 연구의 목적은 유산 완충 용액의 pH 및 유산 농도 변화가 법랑질에서 인공 우식 병소의 재광화 양상에 미치는 영향을 평가하기 위함이다. 유산 완충 용액을 이용하여 법랑질을 탈회시키고, 유산의 농도가 100, 50, 25, 10 mM이고 pH가 4.3인 네 가지 재광화 용액 (Group 1, 2, 3, 4)에 10일, pH 6.0인 네 가지 재광화 용액 (Group 5, 6, 7, 8)에 12일간 처리한 후 무기질의 양적 변화를 편광 현미경에서 얻은 상에서의 탈회 깊이의 변화, 우식 표면층 깊이의 변화로 측정하였다. 또한 micro-computed tomography (micro-CT) 를 이용하여 탈회 후와 재광화 후를 촬영하여 얻은 상으로부터 lesion 부위의 density를 비교하였다. 1. pH 4.3에서 유산 농도가 증가할수록 우식 표면층의 증가와 표층하 탈회부 중 심층부의 isotropic zone 등의 재광화 현상을 보이나, 전체 탈회 깊이 역시 증가하였다. 2. pH 6.0에서 우식 표면층에 국한된 재광화 현상을 보이고, 전체 탈회 깊이는 변화가 없었다. 이상의 실험 결과로 미루어 포화도가 일정한 유산 완충 용액으로 재광화 유도시 pH가 낮고 유산의 농도가 높을수록 표면으로부터 심층부 동역학적 변화에 더 영향을 주었으며, micro-CT를 이용한 우식 병소 부위의 density 확인을 통해 무기질의 침착과 방출 현상을 객관적으로 평가할 수 있었다.

There are considerable in vitro and in vivo evidences for remineralization and demineralization occurring simultaneously in incipient enamel caries. In order to "heal" the incipient dental caries, many experiments have been carried out to determine the optimal conditions for remineralization. It was shown that remineralization is affected by different pH, lactic acid concentrations, chemical composition of the enamel, fluoride concentrations, etc. Eighty specimens from sound permanent teeth without demineralization or cracks, 0.15 mm in thickness, were immersed in lactic acid buffered demineralization solutions for 3 days. Dental caries with a surface zone and subsurface lesion were artificially produced. Groups of 10 specimens were immersed for 10 or 12 days in lactic acid buffered remineralization solutions consisting of pH 4.3 or pH 6.0, and 100, 50, 25, or 10 mM lactic acid. After demineralization and remineralization, images were taken by polarizing microscopy (${\times}100$) and micro-computed tomography. The results were obtained by observing images of the specimens and the density of the caries lesions was determined. 1.As the lactic acid concentration of the remineralization solutions with pH 4.3 was higher, the surface zone of the carious enamel increased and an isotropic zone of the subsurface lesion was found. However, the total decalcification depth increased at the same time. 2.In the remineralization solutions with pH 6.0, only the surface zone increased slightly but there was no significant change in the total decalcification depth and subsurface zone. In the lactic acid buffer solutions with the lower pH and higher lactic acid concentration, there were dynamic changes at the deep area of the dental carious lesion.

키워드

참고문헌

  1. Head J.A. A study of saliva and its action on tooth enamel in reference to its hardening and softening. J Am Med Assoc 59:2118-2122, 1912
  2. Anderson, B.G. Clinical study of arresting dental caries. J Dent Res 17:443-452, 1938 https://doi.org/10.1177/00220345380170060201
  3. Backer Dirks O. Posterupted changes in dental enamel. J Dent Res 45:503-511, 1966 https://doi.org/10.1177/00220345660450031101
  4. Brudevold F., McCann H.G. Enamel solubility tests and their significance in regard to dental caries. Ann.N.Y.Acad.Sci. 153:20-51, 1968 https://doi.org/10.1111/j.1749-6632.1968.tb11725.x
  5. Christoffersen J., Arends J. Progress of artificial carious lesions in enamel. Caries Res 16:433-439, 1982 https://doi.org/10.1159/000260633
  6. Aoba T., Okazaki M., Takahashi J., Moriwaki Y. X-ray diffraction study on remineralization using systhetic hydroxyapatite pellets. Caries Res 12:223-230, 1978 https://doi.org/10.1159/000260336
  7. Sperber G.H., Buonocore M.G. Enamel surface in white spot formation. J Dent Res 42:724-731, 1963 https://doi.org/10.1177/00220345630420022101
  8. Moreno E.C., Zahradnik R.T. Chemistry of enamel subsurface demineralization in vitro. J Dent Res 53:226-235, 1974 https://doi.org/10.1177/00220345740530020901
  9. Featherstone J.D.B., Duncan J.F., Cutress T.W. A Mechanism for dental caries based on chemical process and diffusion phenomena during in-vitro caries simulation on human tooth enamel. Arch Oral Biol 24:101-112, 1979 https://doi.org/10.1016/0003-9969(79)90057-8
  10. Feagin F., Patel P.R., Koulourides T., Pigman W. Study of the effect of calcium, phosphate, fluoride and hydrogen ion concentrations on the remineralization of partially demineralized human and bovine enamel surfaces. Arch Oral Biol 16:535-548, 1971 https://doi.org/10.1016/0003-9969(71)90199-3
  11. Featherstone J.D.B., Mellerg J.R. Relative rates of progress of artificial caries lesions in bovine, ovine and human enamel. Caries Res 15(1):109-114, 1981 https://doi.org/10.1159/000260508
  12. Margolis H.C., Moreno E.C., Murphy B.J. Effect of low levels of fluoride in solution on enamel demineralization. J Dent Res 65:23-29, 1986 https://doi.org/10.1177/00220345860650010301
  13. Darling AI. Studies of the early lesions of enamel caries its nature, mode of spread and points of entry. Brit Dent J 8:119-135, 1958
  14. Silverstone L.M., Wefel J.S., Zimmerman B.F., Clarkson B.H., Featherstone M.J. Re-mineralization of natural and artificial lesions in human dental enamel in vitro effect of calcium concentration of the calcific fluid. Caries Res 15:138-157, 1981 https://doi.org/10.1159/000260512
  15. 박정원, 허복, 이찬영. 유기산 완충 용액의 포화도가 법랑질 및 상아질의 재광화에 미치는 영향과 산회인회석의 AFM 관찰. 대한치과보존학회지 25:459-473, 2000
  16. 오현석, 금기연, 노병덕, 이찬영. 산 완충 용액의 pH가 인공치근우식의 형성에 미치는 영향. 대한치과보존학회지 24:495-502, 1999
  17. 이찬영. 산완충용액을 이용한 인공치아우식형성. 연세치대논문집 7:34-41, 1992
  18. Gray J.A. & Francis M.D. Physical chemistry of enamel dissolution, Mechanism of hard tissue distruction, (American Association of Advances in Science, Washington) Publ, No 75:213, 1963
  19. Featherstone J.D.B., Duncan J.F., Cutress T.W. Crystallographic changes in human tooth enamel during in vitro caries simulation. Arch Oral Biol 23:405-413, 1978 https://doi.org/10.1016/0003-9969(78)90100-0
  20. Featherstone J.D.B., Rodgers B. E., Smith M.W. Physicochemical requirements for rapid remineralization of early carious lesions. Caries Res 15:221-235, 1981 https://doi.org/10.1159/000260518
  21. Moreno E.C., Margolis H.C. Composition of Human plaque fluid. J Dent Res 67:1181-1189, 1988 https://doi.org/10.1177/00220345880670090701
  22. Nikiforuk G. Fluoride dentifrices and fluoride rinses. Understanding dental caries Vol. 11. Prevention :87-112, Karger, Basel and New York, 1985
  23. 한원섭, 금기연, 이찬영. 인공치아우식의 재광화에 미치는 불소의 영향. 대한치과보존학회지 21:161-173, 1996
  24. 김민경, 금기연, 이찬영. 법랑질 인공우식의 재광화에 미치는 pH의 영향에 한 연구. 대한치과보존학회지 22:193-208, 1997

피인용 문헌

  1. Effect of fluoride concentration in pH 4.3 and pH 7.0 supersaturated solutions on the crystal growth of hydroxyapatite vol.37, pp.1, 2012, https://doi.org/10.5395/rde.2012.37.1.16