Reliability Analysis of the GCM Data Downscaling Methods for the Climate-Induced Future Air Temperature Changes in the Coastal Zone

연안 해역의 미래 기온변화 예측을 위한 GCM 자료 Downscaling 기법의 신뢰수준 분석

  • 이길하 (한국해양연구원 연안개발연구본부, 건국대학교) ;
  • 조홍연 (한국해양연구원 연안개발연구본부, 건국대학교) ;
  • 조범준 (한국해양연구원 연안개발연구본부, 건국대학교)
  • Published : 2008.02.29

Abstract

Future impact of anthropogenic climate-induced change on ecological regime has been an issue and information on water temperature is required for estimating coastal aquatic environment. One way to induce water temperature is to relate water temperature to air temperature and GCM is able to provide future air temperature data to do this. However, GCM data of low spatial resolution doesn't incorporate local or sitespecific air temperature in need of application, and downscaling processes are essential. In this study, a linear regression is used to relate nationally averaged air temperature to local area for the time period of 2000-2005. The RMSE for calibration (2000-2005) is 1.584, while the RMSE for validation is 1.675 for the year 2006 and 1.448 for the year 2007. The NSC for calibration (2000-2005) is 0.962, while the NSC for validation is 0.955 for the year 2006 and 0.963 for the year 2007. The results show that the linear regression is a good tool to relate local air temperature to nationally averaged air temperature with $1.0{\sim}2.0^{\circ}C$ of RMSE. The study will contribute to estimate future impact of climate-induced change on aquatic environment in Korean coastal zone.

미래 연안 생태환경변화 예측을 위한 기후변화에 따른 수온변화 예측이 필요하며, 연안 수온변화는 GCM 자료에서 제공하는 미래 기온변화 예측자료를 국지적인 기온자료로 Downscaling 기법을 적용하여 사용할 수 있다. 본 연구에서는 선형회귀분석기법을 이용하여 2000년${\sim}$2005년 우리나라 평균기온자료를 연안해역의 국지적인 기온자료로 Downscaling 하는 방법을 제안하고, 제안한 방법의 검증을 수행하였다. Downscaling 방법의 보정과정에서의 RMS오차 평균은 1.584정도이며, 2006년${\sim}$2007년 자료를 이용한 검정과정에서의 RMS 오차 평균은 1.675, 1.448 정도로 추정오차는 보정과정에서의 오차수준을 유지하고 있는 것으로 파악되었다. 또한, NSC 값도 보정과정에서는 0.962, 2006년${\sim}$2007년 자료를 이용한 검정과정에서는 0.955, 0.963으로 보정과정에서의 일치수준을 유지하고 있는 것으로 파악되어 선형회귀분석 기법을 이용한 우리나라 연안의 국지적인 기온은 RMS 오차 $1.0{\sim}2.0^{\circ}C$ 수준으로 전국 평균기온을 이용하여 추정할 수 있다.

Keywords

References

  1. 김우철 등, 2000. 통계학 개론, 제4개정판, 영지문화사
  2. 조홍연, 이길하, 조경준, 김준성 (2007). 연안 해역 기온과 수온의 상관관계 및 이력현상 분석, 한국해안해양공학회지, 19(3), 213-221
  3. 이길하 (2007). 우리나라 연안 기온과 수온의 비선형 상관관계 분석, 한국해안해양공학회지, 19(2), 128-135
  4. Asselman, N.E.M., Middelkoop, H. and Dijk, P.M. (2003). The impact of change in climate and land use on soil erosion, transport and deposition of suspended sediment in the River Rhine, Hydrological Processes, 17, 3225-3244 https://doi.org/10.1002/hyp.1384
  5. Duan, Q.Y., Gupta, V.K. and Sorooshian, S. (1993). Suffled Complex Evolution approach for effective and efficient global minimization, Journal of Optimization Theory and Application, 76, 501-521 https://doi.org/10.1007/BF00939380
  6. IPCC, (2001). Climate change 2001: The scientific basis, Cambridge University Press
  7. IPCC-TGCIA (1999). Guidelines on the use of scenario data for climate impact and adaptation assessment, Version 1. In: Carter, T.R., Hulme, M., Lal, M. (Eds.). Intergovernmental Panel on Climate Change, Task Group on Scenarios for Climate Impact Assessment.
  8. Meehl, G.A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J.F.B., Stouffer, R. and Taylor, K. (2007). Multimodel dataset: A new era in climate change research, American Meteorological Society, pp1383-1394
  9. Nash, J.E. and Sutcliffe, J.V. (1970). River flow forecasting through conceptual models, I-A Discussion of principles, Journal of Hydrology, 10, 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  10. Nelder, J.A. and Mead, R.A. (1965). A simplex method for function minimization, Computer Journal. 7, 308-313 https://doi.org/10.1093/comjnl/7.4.308
  11. Pilgrim, J.M. and Stefan, H.G. (1995). Correlation of Minnesota stream water temperatures with air temperatures, Project. Rep. 382. St Anthony Falls Lab., U of Minnesota, Minneapolis
  12. Preud'Homme, E.B. and Stefan, H.G. (1993). Stream temperature estimation from air temperature, Water Resources Bulletin, 29(1), 27-45 https://doi.org/10.1111/j.1752-1688.1993.tb01502.x
  13. Stockle, C.O., Dyke, P.T., Williams, J.R., Jones, C.A. and Rosenberg, N.J. (1992). A method for estimating the direct and climate effects of rising atmospheric carbon dioxide on growth and yield of crops: Part II. Sensitivity analysis at three sites in the Midwestern USA, Agricultural Systems, 38, 239-256 https://doi.org/10.1016/0308-521X(92)90068-Y
  14. Webb, B.W., (1987). The relationship between air and water temperatures for a Devon River, Rep. Trans., Devon Association for the Advancement of Science, Exter, U.K., 197-222
  15. Wilby, R.L., Charles, S.P., Zorita, E., Timbal, B., Whetton, P. and Mearns, L.O. (2004). Guidelines for Use of Climate Scenarios Developed from Statistical Downscaling Methods, Task Group on Data and Scenario Support for Impacts and Climate Analysis (TGICA), IPCC