DOI QR코드

DOI QR Code

Resistive Switching Characteristics of TiO2 Films with -Embedded Co Ultra Thin Layer

  • Do, Young-Ho (New functional materials and devices lab, Department of Physics, Hanyang University) ;
  • Kwak, June-Sik (New functional materials and devices lab, Department of Physics, Hanyang University) ;
  • Hong, Jin-Pyo (New functional materials and devices lab, Department of Physics, Hanyang University)
  • Published : 2008.03.30

Abstract

We systematically investigated the resistive switching properties of thin $TiO_2$ films on Pt/Ti/$SiO_2$/Si substrates that were embedded with a Co ultra thin layer. An in-situ sputtering technique was used to grow both films without breaking the chamber vacuum. A stable bipolar switching in the current-voltage curve was clearly observed in $TiO_2$ films with an embedded Co ultra thin layer, addressing the high and low resistive state under a bias voltage sweep. We propose that the underlying origin involved in the bipolar switching may be attributed to the interface redox reaction between the Co and $TiO_2$ layers. The improved reproducible switching properties of our novel structures under forward and reverse bias stresses demonstrated the possibility of future non-volatile memory elements in a simple capacitive-like structure.

Keywords

References

  1. S. Lai, T. Lowrey, Int. Electron Devices Meet. Tech. Dig. (2001) 803
  2. G. A. Prinz, Science 282 (1998) 1660 https://doi.org/10.1126/science.282.5394.1660
  3. T. Hayashi, Y. Igarashi, D. Inomata, T. Ichimori, T. Mitsuhashi, K. Ashikaga, T. Ito, M. Yoshimaru, M. Nagata, S. Mitarai, H. Godaiin, T. Nagahama, C. Isobe, H. Moriya, M. Shoji, Y. Ito, H. Kuroda, and M. Sasaki, Int. Electron Devices Meet. Tech. Dig. (2002) 543
  4. A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, and M. Taguchi, Int. Electron Devices Meet. Tech. Dig. (2005) 746
  5. Y. Watanabe, J. G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, A. Beck, and S. J. Wind, Appl. Phys. Lett. 78 (2001) 3738 https://doi.org/10.1063/1.1377617
  6. M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez, Phys. Rev. Lett. 92 (2004) 178302-1 https://doi.org/10.1103/PhysRevLett.92.178302
  7. I. G. Baek, D. C. Kim, M. J. Lee, H.-J. Kim, E. K. Yim, M. S. Lee, J. E. Lee, S. E. Ahn, S. Seo, J. H. Lee, J. C. Park, Y. K. Cha, S. O. Park, H. S. Kim, I. K. Yoo, U.-I. Chung, J. T. Moon, B. I. Ryu, Int. Electron Devices Meet. Tech. Dig. (2005) 750
  8. H. Sim, H. Choi, D. Lee, M. Chang, D. Choi, Y. Son, E.-H. Lee, W. Kim, Y. Park, I.-K. Yoo, and H. Hwang, Int. Electron Devices Meet. Tech. Dig. (2005) 758
  9. K. Szot, W. Speier, G. Bihlmayer, and R. Waser, Nat. Mater. 5 (2006) 312 https://doi.org/10.1038/nmat1614
  10. S. Seo, M. J. Lee, D. C. Kim, S. E. Ahn, B.-H Park, Y. S. Kim, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim, J.-S. Kim, J. S. Choi, J. H. Lee, S. H. Jeon, S. H. Hong, and B. H. Park, Appl. Phys. Lett. 87 (2005) 263507
  11. T. N. Fang, S. Kaza, S. Haddad, A. Chen, Y. C. Wu, Z. Lan, S. Avanzino, D. Liao, C. Gopalan, S. Choi, S. Mahdavi, M. Buynoski, Y. Lin, C. Marrian, C. Bill, M. V. Buskirk, and M. Taguchi, IEEE International Electron Devices Meeting 2006, IEDM '06 Technical Digest. IEEE International, (2006) 1
  12. T. W. Hickmott, J. Appl. Phys. 36 (1965) 1885 https://doi.org/10.1063/1.1714372
  13. W. R. Hiatt, and T. W. Hickmott, Appl. Phys. Lett. 6 (1965) 106 https://doi.org/10.1063/1.1754187
  14. K. L. Chopra, J. Appl. Phys. 36 (1965) 184 https://doi.org/10.1063/1.1713870
  15. F. Argall, Solid-State Electron. 11 (1968) 535
  16. T. W. Hickmott, J. Vac. Sci. Technol. 6 (1969) 828 https://doi.org/10.1116/1.1492715
  17. A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura, Nature (London) 388 (1997) 50 https://doi.org/10.1038/40363
  18. A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, Appl. Phys. Lett. 77 (2000) 139 https://doi.org/10.1063/1.126902
  19. S. Q. Liu, N. J. Wu, and A. Ignatiev, Appl. Phys. Lett. 76 (2000) 2749 https://doi.org/10.1063/1.126464
  20. C. Rossel, G. I. Meijer, D. Bremaud, and D. Widmer, J. Appl. Phys. 90 (2001) 2892 https://doi.org/10.1063/1.1389522
  21. S. Tsui, A. Baikalov, J. Cmaidalka, Y. Y. Sun, Y. Q. Wang, Y. Y. Xue, C. W. Chu, L. Chen, and A. J. Jacobson, Appl. Phys. Lett. 85 (2004) 317 https://doi.org/10.1063/1.1768305
  22. Y. H. Do, K. W. Jeong, C. O. Kim, and J. P. Hong, J. Korea Phys. Soc. 48 (2006) 1492
  23. A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 85 (2004) 4073 https://doi.org/10.1063/1.1812580
  24. A. Baikalov, Y. Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y. Y. Sun, and Y. Y. Xue, C. W. Chu, Appl. Phys. Lett., 83 (2003) 957 https://doi.org/10.1063/1.1590741

Cited by

  1. Effect of Oxidation Amount on Gradual Switching Behavior in Reset Transition of Al/TiO$_{2}$-Based Resistive Switching Memory and Its Mechanism for Multilevel Cell Operation vol.51, pp.1347-4065, 2012, https://doi.org/10.1143/JJAP.51.04DD16
  2. Resistive Switching in Perovskite-Oxide Capacitor-Type Devices vol.50, pp.7, 2014, https://doi.org/10.1109/TMAG.2013.2297408
  3. /Al memory cells vol.25, pp.6, 2010, https://doi.org/10.1088/0268-1242/25/6/065002