DOI QR코드

DOI QR Code

Nano-Floating Gate Memory Devices with Metal-Oxide Nanoparticles in Polyimide Dielectrics

  • Kim, Eun-Kyu (Quantum-Function Spinics Lab. and Dept. of Physics, Hanyang University) ;
  • Lee, Dong-Uk (Quantum-Function Spinics Lab. and Dept. of Physics, Hanyang University) ;
  • Kim, Seon-Pil (Quantum-Function Spinics Lab. and Dept. of Physics, Hanyang University) ;
  • Lee, Tae-Hee (Quantum-Function Spinics Lab. and Dept. of Physics, Hanyang University) ;
  • Koo, Hyun-Mo (Dept. of Electronic Materials Engineering, Kwangwoon University) ;
  • Shin, Jin-Wook (Dept. of Electronic Materials Engineering, Kwangwoon University) ;
  • Cho, Won-Ju (Dept. of Electronic Materials Engineering, Kwangwoon University) ;
  • Kim, Young-Ho (Div. of Advanced Materials Science and Engineering, Hanyang University)
  • 발행 : 2008.03.30

초록

We fabricated nano-particles of ZnO, $In_2O_3$ and $SnO_2$ by using the chemical reaction between metal thin films and polyamic acid. The average size and density of these ZnO, $In_2O_3$ and $SnO_2$ nano-particles was approximately 10, 7, and 15 nm, and $2{\times}10^{11},\;6{\times}10^{11},\;2.4{\times}10^{11}cm^{-2}$, respectively. Then, we fabricated nano-floating gate memory (NFGM) devices with ZnO and $In_2O_3$ nano-particles embedded in the devices' polyimide dielectrics and silicon dioxide layers as control and tunnel oxides, respectively. We measured the current-voltage characteristics, endurance properties and retention times of the memory devices using a semiconductor parameter analyzer. In the $In_2O_3$ NFGM, the threshold voltage shift (${\Delta}V_T$) was approximately 5 V at the initial state of programming and erasing operations. However, the memory window rapidly decreased after 1000 s from 5 to 1.5 V. The ${\Delta}V_T$ of the NFGM containing ZnO was approximately 2 V at the initial state, but the memory window decreased after 1000 s from 2 to 0.4 V. These results mean that metal-oxide nano-particles have feasibility to apply NFGM devices.

키워드

참고문헌

  1. S. Tiwari, F. Rana, H. Hanafi, A. Harstein, E. F. Crabbe, and K. Chan, 'A silicon nanocrystal based memory,' Appl. Phys. Lett., vol. 68, pp. 1377-1379, 1996 https://doi.org/10.1063/1.116085
  2. H. I. Hanafi, S. Tiwari, and I. Khan, 'Fast and long retention-time nano-crystal memory', IEEE Trans. Electron Devices, vol. 43, pp. 1553-1558, 1996 https://doi.org/10.1109/16.535349
  3. D. U. Lee, M. S. Lee, J.-H. Kim, E. K. Kim, H.-M. Koo, W.-J. Cho, and W. M. Kim, 'Floating gated silicon-insulator nonvolatile memory devices with Au nanoparticles embedded $SiO_{1.3}N$ insulators by digital sputtering method,' Appl. Phys. Lett., vol. 90, p. 093514, 2007 https://doi.org/10.1063/1.2711772
  4. A. K. Sharma, 'advanced semiconductor memories, architectures, designs, and application,' Wiley-IEEE Press, New Jersey, p. 596, 2002
  5. W. D. Brown and J. E. Brewer, 'Nonvolatile semiconductor memory technology, a comprehensive guide to understanding and using NVSM devices,' Wiley-IEEE Press, New York, p. 189, 1997
  6. S. Oda and D. Ferry, 'Silicon nanoelectronics,' CRC press, New York, p. 243, 2005
  7. J. H. Kim, J. Y. Jin, J. H. Jung, I. Lee, T. W. Kim, S. K. Kim, C. S. Yoon, and Y.-H. Kim, 'Formation and electrical properties of $Ni_{1-x}Fe_x$ nanocrystals embedded in a polyimide layers for applications as nonvolatile flash memories,' Appl. Phys. Lett., vol. 86, p. 032904, 2005 https://doi.org/10.1063/1.1850194
  8. J. H. Jung, J. Y. Jin, I. Lee, T. W. Kim, H. G. Roh, and Y.-H. Kim, 'Memory effect of ZnO nanocrystals embedded in an insulating polyimide layer,' Appl. Phys. Lett.. vol. 88, p. 112107, 2006 https://doi.org/10.1063/1.2185615
  9. E. K. Kim, J.-H. Kim, D. U. Lee, G. H. Kim, and Y.-H. Kim, 'Characterization of nano-floating gate memory with ZnO nanoparticles embedded in polymeric matrix,' Jpn. J. Appl. Phys., vol. 45, no. 9A, pp. 7209-7212, 2006 https://doi.org/10.1143/JJAP.45.7209
  10. D. U. Lee, J.-H. Kim, and E. K. Kim, 'Fabrication and electrical characterization of a floating gate capacitor with $In_2O_3$ nano-particles', J. Korean Phys. Soc., vol. 49, no. 3, pp. 1188-1191, 2006
  11. H.-M. Koo, W.-J. Cho, D. U. Lee, S. P. Kim, and E. K. Kim, 'Improvement of charge storage characteristics on floating gated nonvolatile memory devices with $In_2O_3$ nanoparticles embedded polyimide gate insulator', Appl. Phys. Lett., vol. 91, p. 043513, 2007 https://doi.org/10.1063/1.2764558
  12. D. U. Lee, S. P. Kim, J.-H. Kim, E. K. Kim, H.-M. Koo, W.-J. Cho, and Y.-H. Kim, 'Electrical characterization of non volatile memory device with $In_2O_3$ nano-particles embedded in polyimide,' J. Korean Phys. Soc., vol. 51, pp. S318-S321, 2007 https://doi.org/10.3938/jkps.51.318
  13. D. U. Lee, S. P. Kim, T. H. Lee, J.-H. Kim, E. K. Kim, W.-J. Cho, and Y.-H. Kim, 'Characterization of the charging effect with $In_2O_3$ and $SnO_2$ nano-particles in a polyimide layer,' J. Korean Phys. Soc., vol. 51, pp. 1176-1179, 2007 https://doi.org/10.3938/jkps.51.1176
  14. D. K. Schroder, 'Semiconductor material and device characterization,' Wiley-IEEE Press, New Jersey, p. 215, 2006

피인용 문헌

  1. Ion beam synthesis of indium-oxide nanocrystals for improvement of oxide resistive random-access memories vol.5, pp.1, 2018, https://doi.org/10.1088/2053-1591/aaa30b