DOI QR코드

DOI QR Code

Effects of Whey Protein Hydrolysates on Lipid Profiles and Appetite-Related Hormones in Rats Fed High Fat Diet

고지방식이를 섭취한 흰쥐에서 유청단백질 가수분해물의 섭취가 지질 농도 및 식욕 관련 호르몬에 미치는 영향

  • Park, Jung-Yoon (Dept. of Food and Nutrition, Seoul National University) ;
  • Park, Mi-Na (Dept. of Research Institute of Human Ecology, Seoul National University) ;
  • Choi, You-Young (Medicinal & Nutraceutical Food Research Team, R&D Center, Maeil Dairy Industry Co. Ltd.) ;
  • Yun, Sung-Seob (Medicinal & Nutraceutical Food Research Team, R&D Center, Maeil Dairy Industry Co. Ltd.) ;
  • Chun, Ho-Nam (Medicinal & Nutraceutical Food Research Team, R&D Center, Maeil Dairy Industry Co. Ltd.) ;
  • Lee, Yeon-Sook (Dept. of Food and Nutrition, Seoul National University)
  • 박정윤 (서울대학교 식품영양학과) ;
  • 박미나 (서울대학교 생활과학연구소) ;
  • 최유영 (매일유업(주) 중앙연구소) ;
  • 윤숭섭 (매일유업(주) 중앙연구소) ;
  • 전호남 (매일유업(주) 중앙연구소) ;
  • 이연숙 (서울대학교 식품영양학과)
  • Published : 2008.04.30

Abstract

This study was carried out to compare the effects of whey protein concentrate, its hydrolysates and macropeptide fractions obtained from papain treatment of whey protein on lipid levels and appetite-related hormones in obesity model rats induced by high fat diet. Four week-old male Sprague-Dawley rats were fed high fat (18% w/w) and low protein (10% w/w) diet for 4 weeks and then divided into four groups (n=8/group). Rats were fed high fat diets containing various nitrogen sources; 10% whey protein concentrate (10WPC), 25% whey protein concentrate (25WPC), 25% whey protein hydrolysates (25WH), and 25% whey macropeptide fractions (25WP, MW$\geq$10,000), respectively for 6 weeks. There were no significant differences in body weight gain and food intake among groups. A significant decrease of total lipid, triglyceride in serum was observed in 25WH and 25WP groups. Total lipid and triglyceride contents of the liver were significantly decreased in 25WPC, 25WH and 25WP groups compared with 10WPC group. However, in the liver, there were no differences in the contents of total lipid and triglyceride among 25WPC, 25WH and 25WP groups. The daily amounts of feces were significantly increased in 25WH and 25WP groups and the excretion of total lipid and triglyceride were significantly increased in 25WH group. Serum glucose and insulin concentration were significantly decreased in 25WH group. The concentration of serum ghrelin was significantly decreased in the 25WPC, 25WH and 25WP groups compared with 10WPC group. However, there was no significant difference in the concentration of serum leptin among groups. These results suggest that whey protein hydrolysates and macropeptide fractions may show beneficial effects on the lipid profile in serum and liver, appetite regulation and insulin resistance in obesity model rats induced by high fat diet.

본 연구에서는 고지방식으로 유도한 식이성 비만 모델 수컷 흰쥐에게 고지방식이와 함께 유청단백질 및 유청단백질 가수분해물을 급여하였을 때, 유청단백질 가수분해물의 섭취에 따른 체중, 장기 및 체지방, 지질 농도 및 식욕 조절호르몬에 대한 영향을 살펴보았다. 즉, 실험동물 흰쥐에게 18% 우지를 첨가한 고지방식을 기본으로 하여 질소원으로 유청단백질(whey protein concentrate 80: WPC80, 매일유업(주)) 10%를 4주간 공급한 후(control period), 4군으로 나누어서 고지방식을 기본으로 유청단백질, 유청단백질 가수분해물(whey protein hydrolysate), 유청 macropeptide fraction(whey macropeptide fraction; WH중 MW${\geq}$10,000)의 3종을 함유한 실험식이를 각각 6주 동안 급여하였다. 그 결과는 다음과 같다. 체중증가량 및 식이섭취량은 유청단백질 수준이나 가수분해물 섭취에 따른 실험군간 유의적 차이가 없었다. 간의 무게는 가수분해물 섭취에 의해 감소하였으나, 신장, 고환 및 비장의 무게는 실험군간 유의적 차이가 없었다. 한편, 신장의 무게는 고단백 식이에 의해 유의적으로 증가하였다(p<0.05). 지방조직의 무게는 신장 주변 지방과 부고환 주변 지방 모두 유청단백질 수준이나 가수분해물 섭취에 따른 차이를 보이지 않았다. 혈청의 총 지질과 중성지방은 가수분해물 섭취에 의해 유의적으로 낮게 나타났다(p<0.05). 반면, 혈청의 총 콜레스테롤과 HDL 콜레스테롤은 유청단백질 수준과 가수분해물 섭취에 따른 차이를 보이지 않았다. 간 조직의 총 지질, 중성지방과 총 콜레스테롤은 가수분해물 섭취에 따라 차이가 없었으며, 고단백식이에 의해 유의적으로 감소하였다(p<0.05). 일일 분 배설량은 고단백식이에 의해 유의적으로 증가하였다(p<0.05). 분 중 총 지질함량과 중성지방 함량은 가수분해물 섭취 시 그 함량이 유의적으로 증가하였다(p<0.05). 반면, 분 중 총 콜레스테롤 함량은 유청단백질 수준이나 가수분해물 섭취에 따른 영향을 받지 않았다. 혈청 중 glucose와 insulin 농도는 가수분해물 섭취 시 유의적으로 감소하였다(p<0.05). 혈청 중 leptin 농도는 유청단백질 수준이나 가수분해물 섭취에 따른 유의적인 차이를 보이지 않았다. 혈청 중 ghrelin 농도는 고단백 식이에 의해 유의적으로 감소하였으며(p<0.05), 특히, 가수분해물 섭취 시 감소하는 경향을 보였다. 이상의 결과로부터 유청단백질 가수분해물의 섭취는 intact 유청단백질보다 흰쥐의 혈청과 간의 지질 농도를 저하시키고, 분 중으로의 지질배설량을 증가시키는 것으로 나타났다. 또한 혈중 glucose 농도와 insulin 농도를 감소시킴으로서 인슐린 저항성을 개선시켰으며, ghrelin 감소를 통한 식욕조절 효과를 보였다. 한편, 본 연구에서 유청단백질 가수분해물이 체중감소나 조직의 지방량에는 영향을 미치지 않았는데, 이것은 본 연구에서 사용된 25% 단백질 수준이 체중감소나 조직 지방량에 영향을 미치기에는 부족한 수준이라 사료되며, 단백질 수준에서의 증가 또는 보다 장기간 동안의 섭취가 수행되어진다면 식욕 촉진 호르몬 분비 감소를 통해 체중 감소에 있어서 더 유의적인 효과가 나타날 것으로 사료된다.

Keywords

References

  1. Kim YJ. 1973. Home fruit tree. Oseung Press, Seoul, Korea. p 207
  2. Kim SH, Kang BT, Park DC, Yoon OH, Lee JW, Han MD, Choi JD. 2000. Physicochemical properties and chemical composition of plums produced in Kimcheon. J East Asian Soc Dietary Life 10: 37-41
  3. Chung KH. 1999. Morphological characteristics and principal component analysis of plums. Korean J Hort Sci Technol 17: 23-28
  4. Kim HJ, Yu MH, Lee S, Park JH, Park DC, Lee IS. 2004. Effect of plum fruits extracts at different growth stages on quinone reductase induction and growth inhibition on cancer cells. J Korean Soc Food Sci Nutr 33: 1445-1450 https://doi.org/10.1210/jc.77.5.1287
  5. Kim DO, Jeong SW, Lee CY. 2003. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81: 321-326 https://doi.org/10.1016/S0308-8146(02)00423-5
  6. Raynal J, Moutounet M, Souquet JM, 1989. Intervention of phenolic compounds in plum technology. 1. Changes during drying. J Agric Food Chem 37: 1046-1050 https://doi.org/10.1021/jf00088a050
  7. Donovan JL, Meyer AS, Waterhouse AL. 1998. Phenolic composition and antioxidant activity of prunes and prune juice (Prunus domestica). J Agric Food Chem 46: 1247-1252 https://doi.org/10.1021/jf970831x
  8. 8. Wang H, Cao G, Prior RL. 1996. Total antioxidant capacity of fruits. J Agric Food Chem 44: 701-705 https://doi.org/10.1021/jf950579y
  9. Cao Y, Cao R. 1999. Angiogenesis inhibited by drinking tea. Nature 398: 381 https://doi.org/10.1038/18793
  10. Eberhardt MV, Lee CY, Liu RH. 2000. Antioxidant activity of fresh apples. Nature 405: 903-904 https://doi.org/10.1111/j.1365-2621.2001.tb04626.x
  11. Ito A, Shamon LA, Yu B, Mata-Greenwood E, Lee SK, van Breemen RB, Mehta RG, Farnsworth NR, Fong HHS, Pezzuto JM, Kinghorn AD. 1998. Antimutagenic constituents of Casimiroa edulis with potential cancer chemopreventive activity. J Agric Food Chem 46: 3509-3516 https://doi.org/10.1021/jf9802373
  12. Kawaii S, Tomono Y, Katase E, Ogawa K, Yano M. 1999. Antiproliferative effects of the readily extractable fractions prepared from various Citrus juices on several cancer cell lines. J Agric Food Chem 47: 2509-2512 https://doi.org/10.1021/jf9812228
  13. Kim MY, Choi SW, Chung SK. 2000. Antioxidative flavonoids from the garlic (Allium sativum L.) shoot. Food Sci Biotechnol 9: 199-203 https://doi.org/10.1007/s00394-004-0448-4
  14. Cook NC, Samman S. 1996. Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem 7: 66-76 https://doi.org/10.1016/0955-2863(95)00168-9
  15. Knekt P, Jarvinen R, Reunanen A, Maatela J. 1996. Flavonoid intake and coronary mortality in Finland: a cohort study. Br Med J 312: 478-481 https://doi.org/10.1136/bmj.312.7029.478
  16. Sung YJ, Kim YC, Kim MY, Lee JB, Chung SK. 2002. Approximate composition and physicochemical properties of plum (Prunus salicina). J Korean Soc Agric Chem Biotechnol 45: 134-137
  17. Chung DH. 1998. Plum: Physiological activities of food. Sunjinmunhwasa, Seoul, Korea. p 122-124
  18. Ham SS, Hong EH, Omura H. 1987. Desmutagenicity of enzymmatically browned substances obtained from reaction of Prumus salicina (red) enzyme and polyphenols. Food Sci Biotechnol 19: 212-219 https://doi.org/10.1271/bbb.64.2594
  19. Lee JS, Kim HJ, Yu MH, Im HG, Park DC. 2003. Antimicrobial activities of 'Formosa' plum at different growth stages against pathogenic bacteria. Korean J Food Preserv 10: 569-573 https://doi.org/10.1016/S0899-9007(00)00230-6
  20. Lee SJ, Chung MJ, Shin JH, Sung NJ. 2000. Effect of natural foods on the inhibition of N-nitrosodimethylamine formation. J Fd Hyg Safety 15: 95-100
  21. Seo SB, Han SM, Kim JH, Kim NM, Lee JS. 2001. Manufacture and physiological fuctionality of wines and liquors by using plum (Prumus salicina). Korean J Biotechnol Bioeng 16: 153-157
  22. Jung GT, Ju IO, Choi DG, Jeong JS, Ryu J, Ko BR, Choi JS, Choi YG. 2005. Chemical characteristics and physiological activities of plums. Korean J Food Sci Technol 37: 816-821
  23. Gaziano JM, Godfried SL, Hennekens CH. 1996. Alcohol and coronary heart disease. TCM 6: 175-178
  24. Muller PH. 1977. A fully enzymatic triglyceride determination. J Clin Chem Clin Biochem 15: 457-464
  25. Richmond W. 1976. Use of choleaterol oxidase for assay of total and free cholesterol in serum continuous flow analysis. Clin Chem 22: 1579-1588 https://doi.org/10.1271/bbb.56.1484
  26. Finley PR, Schifman RB, Williams RJ, Luchti DA. 1978. Cholesterol in high-density lipoprotein: Use of mg2+ /dextran sulfate in its measurement. Clin Chem 24: 931-933
  27. Yamajaki K, Murata M. 1990. Frequency of atherogenic risk factors in japanese obese children. Diabetes Res Clin Pract 10: S211-S219 https://doi.org/10.1016/0168-8227(90)90166-Q
  28. Folch JM, Lees M, Stanley GHS. 1957. A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226: 497-509 https://doi.org/10.1079/BJN19480003
  29. Sidney PG, Bernald R. 1973. Improved menual spectrometric procedure for determination of serum triglyceride. Clin Chem 19: 1077-1078 https://doi.org/10.1016/S0006-291X(02)00822-7
  30. Sale FD, Marchesini S, Fishman PH, Berra B. 1984. A sensitive enzymatic assay for determination of cholesterol in lipid extracts. Academic Press Inc, New York. p 347-350
  31. Reitman S, Frankel S. 1957. A colorimetic method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminase. Am J Clin Pathol 2: 56-63 https://doi.org/10.1271/bbb.69.2409
  32. Taladgis BG, Pearson AM, Duan LR. 1964. Chemistry of the 2-thiobarbituric acid test for determination of oxidation rancidity in foods. J Sci Food Agric 15: 602-607 https://doi.org/10.1002/jsfa.2740150904
  33. Uchiyama M, Mihara M. 1978. Determination of malondialdehyde precursor in tissue by TBA test. Anal Biochem 86: 271-278 https://doi.org/10.1016/0003-2697(78)90342-1
  34. Jeong HG, Choe CS, Yang EJ, Kang MH. 2004. The effect of Lycii fructus beer intake on serum lipid profiles and antioxidant activity in rats. Korean J Food Culture 19: 52-60
  35. Charles H, Halsted MD. 2004. Nutrition and alcoholic liver disease. Semin Liver Dis 24: 289-304 https://doi.org/10.1055/s-2004-832941
  36. Lieber CS. 1991. Perspectives: Do alcohol calories count? Am J Clin Nutr 54: 976-982
  37. Linder MC. 1991. Nutrition and metabolism of fats. In Nutritional biochemistry and metabolism with clinical applications. 2nd ed. Linder MC, ed. Elasevier, New York, Amsterdam, Oxford. p 79-83
  38. Barona E, Lieber CS. 1970. Effect of chronic ethanol feeding on serum lipoprotein metabolism in the rat. J Clin Invest 49: 769-778 https://doi.org/10.1172/JCI106290
  39. Karsenty BC, Chanussot F, Ulmer M, Debry G. 1985. Influence of chronic ethanol intake on obesity liver steatosis and hyperlipidemia in Zucker fa/fa rat. Br J Nutr 54: 5-13 https://doi.org/10.1079/BJN19850086
  40. Nestel PJ, Hirsch EZ. 1965. Clinical and experimental mechanism of alcohol-induced hypertriglycemia. J Lab Clin Med 65: 357-365
  41. Parkes JG, Auerbach W, Goldberg DM. 1990. Effect of alcohol on lipoprotein metabolism II. Lipolityc activities and mixed function oxidase. Enzyme 43: 47-55
  42. Bottiger LE, Carlson LA, Hultman E, Romanus V. 1976. Serum lipids in alcoholics. Acta Med Scand 199: 357-361
  43. Lieber CS. 1994. Alcohol and the liver. Gastroenterology 106: 1085-1105
  44. Anila L, Vijayalakshmi NR. 2002. Flavonoids from Emblica officinalis and Mongifera indica-effectiveness for dyslipidemia. J Ethnopharmacol 79: 81-87 https://doi.org/10.1016/S0378-8741(01)00361-0
  45. Seo HJ, Jeong KS, Lee MK, Park YB, Jung UJ, Kim HJ, Choi MS. 2003. Role of naringin supplement in regulation of lipid and ethanol metabolism in rats. Life Sciences 73:933-946 https://doi.org/10.1016/S0024-3205(03)00358-8
  46. Weir DG, McGing PG, Scott JM. 1985. Folate metabolism, the enterohepatic circulation and alcohol. Biochem Pharmacol 34: 1-7 https://doi.org/10.1016/0006-2952(85)90092-9
  47. Cristian D, Adriana PV, Daniel AD, Jorge C, Ro G. 2005.Antioxidant and free radical scavenging activities of Misodendrum punctulatum, myzodendrone and structurally related phenols. Phytother Res 19: 1043-1047 https://doi.org/10.1002/ptr.1786
  48. Rouach H, Clement M, Ofanelli MT, Janvier B, Nordmann J, Nordmann R. 1983. Hepatic lipid peroxidation and mitochondrial susceptibility to peroxidative attacks during ethanol inhalation and withdrawal. Biochim Biophys Acta 753: 439-444 https://doi.org/10.1016/0005-2760(83)90068-1
  49. Albano E. 2002. Free radical mechanisms in immune reactions associated with alcoholic liver disease. Free Radic Biol Med 32: 110-114 https://doi.org/10.1016/S0891-5849(01)00773-0

Cited by

  1. Effects of Soy Protein, its Hydrolysate and Peptide Fraction on Lipid Metabolism and Appetite-Related Hormones in Rats vol.43, pp.4, 2010, https://doi.org/10.4163/kjn.2010.43.4.342
  2. Anti-obesity Effect of Fermented Whey Beverage using Lactic Acid Bacteria in Diet-induced Obese Rats vol.35, pp.5, 2015, https://doi.org/10.5851/kosfa.2015.35.5.653
  3. Production of Functional Peptide with Anti-obesity Effect from Defatted Tenebrio molitor Larvae Using Proteolytic Enzyme vol.25, pp.3, 2008, https://doi.org/10.1007/s12257-019-0329-6