DOI QR코드

DOI QR Code

Determination of trace arsenic in seawater by flow injection-hydride generation inductively coupled plasma mass spectrometry

연속흐름주입-수소화물생성-유도결합플라스마 질량분석장치를 이용한 바닷물표준시료중의 극미량 비소분석방법의 확립

  • Suh, Jung-Ki (Division of Metrology for Quality Life, Korea Research Institute of Standards and Science)
  • 서정기 (한국표준과학연구원 삶의 질 표준본부 환경측정연구단)
  • Received : 2008.06.13
  • Accepted : 2008.08.07
  • Published : 2008.08.25

Abstract

An inductively coupled plasma mass spectrometry (ICP-MS) instrument equipped with flow injection-hydride generation system was used for the determination of trace arsenic in seawater sample. The accuracy in this method was verified by the analysis of certified reference materials (CRM) of seawater (CASS-4, NASS-5). The analytical results agreed with certified value within the range of uncertainty. The expanded uncertainties for CASS-4 and NASS-5 in this experiment were ranged from 6.2% to 6.8% obtained from repeated analyses of the CRMs (n=5). The detection limit of $As^+$ (m/z=74.9216) in this method was confirmed about 0.01 ug/kg. Linearity obtained from calibration curve of arsenic was excellent ($R^2=1$). The detection at $As^+$ (m/z=74.9216) and $AsO^+$ (m/z=90.9165) by using oxygen reaction gas in DRC mode was compared. Sensitivity at $AsO^+$ (m/z=90.9165) was decreased about 25-fold, but the analytical results are the same that at $As^+$ (m/z=74.9216).

연속흐름주입-수소화물생성-유도결합플라스마질량분석장치를 사용하여 바닷물시료중의 비소를 분석하였다. 두 종류의 바닷물표준시료인 CASS-4, NASS-5를 사용하여 측정값과 인증값을 비교함으로써 본 분석법의 정확성을 확인하였다. 분석결과 CASS-4의 경우 $1.17{\pm}0.07{\mu}g/L$ (인증값 $1.11{\pm}0.16{\mu}g/L$), NASS-5의 경우 $1.24{\pm}0.08{\mu}g/L$ (인증값 $1.27{\pm}0.12{\mu}g/L$)의 값을 얻었다. 이는 각각 독립적으로 5회 측정된 결과의 확장불확도로 표시된 결과이며 CASS-4의 경우 6.2%, NASS-5의 경우 6.8%이었으며 모두 인증값의 불확도 범위안에 있었다. 검량선의 기울기와 바탕값의 표준편차로부터 구한 $As^+$ (m/z=74.9216)의 검출한계는 0.01 ug/kg이었다. 검량선의 직선성은 매우 양호하였다. ($R^2=1$). DRC gas로 산소기체를 사용하여 $AsO^+$ (m/z=90.9165)로 검출하는 방법을 사용하여 결과를 비교하였으며 분석감도는 약 25배 정도 감소하였으나, 검량선의 직선성이 매우 잘 나타났으며, 분석결과도 $As^+$(m/z=74.9216)로 검출할 때와 동일한 결과를 얻을 수 있었다.

Keywords

References

  1. L. Ebdon, L. Pitts and R. Cornelis 'Trace Element Speciation for Environment' Food and Health, ed. Royal Society of Chemistry, Cambridge, UK, 2002
  2. J. O. Nriagu, 'Arsenic in the Environment', Part II: Human Health and Ecosystem Effects, ed. John Wiley & Sons Inc., New York, 1994
  3. L. Romeo, P. Apostoli, M. Kovacic, S. Martini and F. Brugnone, Am J Int Med, 32, 211-6(1997) https://doi.org/10.1002/(SICI)1097-0274(199709)32:3<211::AID-AJIM5>3.0.CO;2-#
  4. Committee on medical and biologic effects on environmental pollutants, Medical and Biological Effects of Environmental Pollutants, copyright 1977, the National Academy of Sciences, all rights reserved, 1977
  5. W. R. Cullen and K. J. Reimer, Chem Rev 89, 713- 764(1989) https://doi.org/10.1021/cr00094a002
  6. M. R. Jekel, Removal of arsenic in drinking water treatment. In: Nriagu J.O. (Ed.) Arsenic in the Environment Part 1: Cycling and Characterization. Advances in Environmental Science and Technology, 26, John Wiley & Sons, New York, 1994
  7. K. A. Francesconi and J. S. Edmonds, Oceanogr. Mar. Biol. Annu. Rev., 31, 111-151(1993)
  8. K. A. Francesconi and J. S. Edmonds, Adv. Inorg. Chem., 44, 147-189(1997) https://doi.org/10.1016/S0898-8838(08)60130-0
  9. K. A. Francesconi and M. Sperling, Analyst, 130, 998- 1001 (2005) https://doi.org/10.1039/b504485p
  10. D. Chakraborti, W. De Jonghe and F. Adams, Anal. Chim. Acta, 119, 331-340(1980) https://doi.org/10.1016/S0003-2670(01)93634-7
  11. S. Nakashima, Fresenius', J. Anal. Chem., 341, 570-571 (1991) https://doi.org/10.1007/BF00328500
  12. T. Kubota, T. Yamaguchi and T. Okutani, Talanta, 46, 1311-1319(1998) https://doi.org/10.1016/S0039-9140(97)00419-0
  13. L. Zhang, Y. Morita, A. Sakuragawa and A. Isozaki, Talanta, 72, 723-729(2007) https://doi.org/10.1016/j.talanta.2006.12.001
  14. B. Welz and M. Sperling, Atomic Absorption Spectrometry, Wiley-VCH, Weinheim, pp. 672, 1675(1999)
  15. M. O. Andreae, Anal. Chem., 49, 820-823(1977) https://doi.org/10.1021/ac50014a037
  16. J. Y. Cabon and N. Cabon, Fresenius' J. Anal. Chem., 368, 484-489(2000). https://doi.org/10.1007/s002160000526
  17. A. G. Howard and S. D. W. Comber, Microchim. Acta, 109, 27-33(1992) https://doi.org/10.1007/BF01243206
  18. S. Karthikeyan, T. Prasada Rao and C. S. P. Iyer, Talanta, 49, 523-530(1999) https://doi.org/10.1016/S0039-9140(99)00039-9
  19. J. Moreda-Pineiro, M. L. Cervera and M. de La Guardia, J. Anal. At. Spectrom., 12, 1377-1380(1997) https://doi.org/10.1039/a705264b
  20. A. M. Featherstone, E. C. V. Butler, B. V. O'Grady and P. Michel, J. Anal. At. Spectrom., 13, 1355-1360(1998) https://doi.org/10.1039/a806155f
  21. X.-P. Yan, X.-B. Yin, X.-W. He and Y. Jiang, Anal. Chem., 74, 2162-2166(2002) https://doi.org/10.1021/ac0157019
  22. S. J. Santosa, H. Mokudai and S. Tanaka, J. Anal. At. Spectrom., 12, 409-415(1997) https://doi.org/10.1039/a605545a
  23. A. Stroh and U. Vo' llkopf, J. Anal. At. Spectrom., 8, 35-40(1993) https://doi.org/10.1039/ja9930800035
  24. J. T. Creed, M. L. Magnuson, C. A. Brockhoff, I. Chamberlain and M. Sivaganesan, J. Anal. At. Spectrom., 11, 505-509(1996) https://doi.org/10.1039/ja9961100505
  25. J. A. Olivares and R. S. Houk, Anal. Chem., 58, 20(1986) https://doi.org/10.1021/ac00292a008
  26. J. W. McLaren, D. Beauchemin and S. S. Berman, Anal. Chem., 59, 610(1987) https://doi.org/10.1021/ac00131a015
  27. D. C. Gregoire, Appl. Spectrosc., 41, 897(1987) https://doi.org/10.1366/0003702874448193
  28. H. Falk, R. Geerling, B. Hattendorf, K. Krengel-Rothensee and K. P. Schmidt, Fresenius J. Anal. Chem., 359(4-5), 352-356(1997) https://doi.org/10.1007/s002160050585
  29. J. W. McLaren, K. W. M. Sie, J. W. Lam, S. N. Willie, P. S. Maxwell, A. Palepu, M. Koether and S. S. Berman., Fresenius J. Anal. Chem., 337(6), 721-728(1990) https://doi.org/10.1007/BF00323105
  30. S. Sri Juari, M. Hiroshige and T. Shigeru., J. Anal. At. Spectrom., 12(4), 409-415(1997) https://doi.org/10.1039/a605545a
  31. C. Chih-Shyue and J. Shiuh-Jen, Spectrochim. Acta, Part B, 51B(14), 1813-1821(1996)
  32. J. Goossens, L. Moens and R. Dams., J. Anal. At. Spectrom., 8(6), 921-926(1993) https://doi.org/10.1039/ja9930800921
  33. I. Vladimir, Scott Baranov and D. Tanner, J. Anal. At, Spectrom., 14(8), 1133-1142(1999) https://doi.org/10.1039/a809889a
  34. J. Jens, Eric Sloth and H. Lasen, J. Anal. At, Spectrom., 15(6), 669-672(2000) https://doi.org/10.1039/b001798l
  35. D. Scott Tanner, I. Vladimir Baranov and Uwe Vollkopf, J. Anal. At, Spectrom., 15(9), 1261-1269(2000) https://doi.org/10.1039/b002604m
  36. D. R. Bandura, V. I, Baranov, S. D. Tanner, Fresenius J. Anal. Chem., 370, 454-470, (2001) https://doi.org/10.1007/s002160100869
  37. Sergei F. Boulyga, Hans-joachim Dietze and J. Sabine becker, Mikrochim. Acta, 137, 93-103(2001) https://doi.org/10.1007/s006040170034
  38. I. Feldmann, N. Jakubowski and D. Stuewer, Fresenius J. Anal. Chem., 365, 415-421(1999) https://doi.org/10.1007/s002160051633
  39. M. Grotti and R. Frache, J. Anal. At. Spectrom., 22, 1481-1487(2007) https://doi.org/10.1039/b711107j
  40. H. E. Tayor, "Inductively Coupled Plasma Mass Spectrometry, Practices and Techniques", Chapter 10, p 152, Copyright 2001 Academic Press, USA, 2001