사람의 제대 및 양막유래 줄기세포의 간세포로의 분화

Hepatogenic Potential of Umbilical Cord Derived-Stem Cells and Human Amnion Derived-Stem Cells

  • 김지영 (서울여자대학교 자연과학대학 생명공학과) ;
  • 이윤정 (수원제일산부인과) ;
  • 박세아 (서울여자대학교 자연과학대학 생명공학과) ;
  • 강현미 (서울여자대학교 자연과학대학 생명공학과) ;
  • 김경식 (연세대학교 의과대학 외과학교실) ;
  • 조동제 (연세대학교 의과대학 산부인과학교실) ;
  • 김해권 (서울여자대학교 자연과학대학 생명공학과)
  • Kim, Ji-Young (Department of Biotechnology, College of Natural Sciences, Seoul Women's University) ;
  • Lee, Yoon-Jung (Suwonjeil Women's Hospital) ;
  • Park, Se-Ah (Department of Biotechnology, College of Natural Sciences, Seoul Women's University) ;
  • Kang, Hyun-Mi (Department of Biotechnology, College of Natural Sciences, Seoul Women's University) ;
  • Kim, Kyung-Sik (Department of Surgery, College of Medicine, Yonsei University) ;
  • Cho, Dong-Jae (Department of OB/GYN, College of Medicine, Yonsei University) ;
  • Kim, Hae-Kwon (Department of Biotechnology, College of Natural Sciences, Seoul Women's University)
  • 발행 : 2008.12.30

초록

목 적: 사람의 제대유래 줄기세포 (HUC)와 양막유래 줄기세포 (HAM)를 간유사세포로 분화 시키고자 하였다. 연구방법: 산모의 동의아래 만삭 정상 산모로부터 양막 및 제대를 얻고 줄기세포를 분리, 배양하였다. 분리된 세포의 줄기세포로서의 특성을 규명하기 위하여 RT-PCR, 세포면역화학 분석 그리고 중배엽성세포로의 분화능 실험을 하였다. 또한 이들 줄기세포를 분화 배양액에서 간유사세포로 분화 유도 후, 간세포 특이 유전자 발현, 알부민 ELISA, 알부민에 대한 면역블로팅 및 세포면역화학염색 그리고 PAS 염색을 시행하였다. 결 과: 사람의 양막 및 제대로부터 세포를 분리하여 줄기세포로서의 특성을 조사하고, 이들 세포의 지방세포, 연골세포, 골아세포로의 분화능력을 확인하였다. 동일한 분화 배양액에서 HUC과 HAM을 간유사세포로 분화시킨 결과 HUC이 모든 조건에서 HAM보다 알부민과 요소를 더 많이 합성 분비하였다. 간유사세포로의 분화능력이 더 좋은 것으로 나타난 HUC을 가지고 최적의 분화를 유도한 결과 $1.2{\pm}0.8\;{\mu}g/mL$의 알부민을 합성 분비하였고, $8.9{\pm}1.2\;mg/dL$의 요소를 합성 분비하였다. 결 론: HUC과 HAM 모두 알부민을 분비하는 간유사세포로 분화할 수 있었으며, HUC이 더 잘 유도되는 것으로 관찰되었다. 이러한 결과로써 HUC과 HAM을 간질환 환자의 간세포 이식 치료에 필요한 세포치료제로써 이용할 수 있을 것으로 생각된다.

Objectives: Many types of liver diseases can damage regenerative potential of mature hepatocytes, hepatic progenitor cells or oval cells. In such cases, a stem cell-based therapy can be an alternative therapeutic option. We examined whether human amnion-derived mesenchymal stem cells (HAM) and human umbilical cord-derived stem cells (HUC) could differentiate into hepatocyte-like cells as therapeutic cells for the liver diseases. Methods: HAM and HUC were isolated from the amnion and umbilical cord of the volunteers after a caesarean section with informed consent. In order to differentiate these cells into hepatocyte-like cells, cells were cultivated in hepatogenic medium using culture plates coated with fibronectin. Effects of hepatocyte growth factor, L-ascorbic acid 2-phosphate, insulin premixture fibroblast growth gactor 4, dimethylsulfoxide, oncostatin M and/or dexamethasone were examined on the hepatic differentiation. After differentiation, the cells were analyzed by RT-PCR, immunocytochemistry, immunoblotting, albumin ELISA, urea assay and periodic acid-schiffs staining. Results: Initial fibroblast-like appearance of HAM and HUC changed to a round shape during culture in the hepatogenic medium. However, in all hepatogenic conditions examined, HUC secreted more amounts of albumin or urea into medium than HAM. Expression of some of hepatocyte-specific genes increased and expression of new genes were observed in HUC following cultivation in hepatogenic medium. Results of immunocytochemistry and immunoblotting analyses demonstrated that HUC secreted albumin into the culture medium. PAS staining further demonstrated that HUC could store glycogen inside of the cells. Conclusions: Both HUC and HAM could differentiate into albumin-secreting, hepatocyte-like cells. Under the same hepatogenic conditions examined, HUC more efficiently differentiated into hepatocyte-like cells compared with the HAM. The results suggest that HUC and HAM could be used as sources of stem cells for the cell-based therapeutics such as in liver diseases.

키워드

참고문헌

  1. Hong SH, Gang EJ, Jeong JA, Ahn C, Hwang SH, Yang IH, et al. In vitro differentiation of human umbilical cord bloodderived mesenchymal stem cells into hepatocyte-like cells. Biochem Biophys Res Commun 2005; 330: 1153-61 https://doi.org/10.1016/j.bbrc.2005.03.086
  2. Lavon N, Yanuka O, Benvenisty N. Differentiation and isolation of hepatic-like cells from human embryonic stem cells. Differentiation 2004; 72: 230-8 https://doi.org/10.1111/j.1432-0436.2004.07205002.x
  3. Tocci A, Forte L. Mesenchymal stem cell: use and perspectives. Hematol J 2003; 4: 92-6 https://doi.org/10.1038/sj.thj.6200232
  4. Rao MS, Mattson MP. Stem cells and aging: expanding the possibilities. Mech Ageing Dev 2001; 122: 713-34 https://doi.org/10.1016/S0047-6374(01)00224-X
  5. Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001; 98: 2396-402 https://doi.org/10.1182/blood.V98.8.2396
  6. Hu Y, Liao L, Wang Q, Ma L, Ma G, Jiang X, et al. Isolation and identification of mesenchymal stem cells from human fetal pancreas. J Lab Clin Med 2003; 141: 342-9 https://doi.org/10.1016/S0022-2143(03)00022-2
  7. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 2003; 21: 105-10 https://doi.org/10.1634/stemcells.21-1-105
  8. Kim J, Lee Y, Kim H, Hwang KJ, Kwon HC, Kim SK, et al. Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Proliferation 2007; 40: 75-90
  9. Kim J, Kang HM, Kim H, Kim MR, Kwon HC, Gye MC, et al. Ex Vivo characteristics of human amniotic membranederived stem cells. Cloning and Stem Cells 2007; 9: 581-95 https://doi.org/10.1089/clo.2007.0027
  10. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004; 103: 1669-75 https://doi.org/10.1182/blood-2003-05-1670
  11. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM. Adult bone marrow is a rich source of human mesenchymal 'stem' cells but umbilical cord and mobilized adult blood are not. Br J Haematol 2003; 121: 368-74 https://doi.org/10.1046/j.1365-2141.2003.04284.x
  12. Tamagawa T, Oi S, Ishiwata I, Ishikawa H, Nakamura Y. Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro. Hum Cell 2007; 20: 77-84 https://doi.org/10.1111/j.1749-0774.2007.00032.x
  13. Kim JW, Kim SY, Park SY, Kim YM, Kim JM, Lee MH, et al. Mesenchymal progenitor cells in the human umbilical cord. Ann Hematol 2004; 83: 733-8 https://doi.org/10.1007/s00277-004-0918-z
  14. Troyer DL, Weiss ML. Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells 2008; 26: 591-9 https://doi.org/10.1634/stemcells.2007-0439
  15. Kuroda R, Usas A, Kubo S, Corsi K, Peng H, Rose T, et al. Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum 2006; 54: 433-42 https://doi.org/10.1002/art.21632
  16. Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 1997; 11: 1048-60 https://doi.org/10.1101/gad.11.8.1048
  17. Molkentin JD, Lin Q, Duncan SA, Olson EN. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 1997; 11: 1061-72 https://doi.org/10.1101/gad.11.8.1061
  18. Sjoberg G, Jiang WQ, Ringertz NR, Lendahl U, Sejersen T. Colocalization of nestin and vimentin/desmin in skeletal muscle cells demonstrated by three-dimensional fluorescence digital imaging microscopy. Exp Cell Res 1994; 214: 447-58 https://doi.org/10.1006/excr.1994.1281
  19. Covas DT, Siufi JL, Silva AR, Orellana MD. Isolation and culture of umbilical vein mesenchymal stem cells. Braz J Med Biol Res 2003; 36: 1179-83
  20. Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO, Tukun A, Uckan D, Can A. Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 2007; 25: 319-31 https://doi.org/10.1634/stemcells.2006-0286
  21. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001; 98: 2615-25 https://doi.org/10.1182/blood.V98.9.2615
  22. D'Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC. Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differenatiation potential. J Cell Sci 2004; 117: 2971-81 https://doi.org/10.1242/jcs.01103
  23. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004; 103: 1669-75 https://doi.org/10.1182/blood-2003-05-1670
  24. Hay DC, Zhao D, Fletcher J, Hewitt ZA, McLean D, Urruticoechea-Uriguen A, et al. Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells 2008; 26: 894-902 https://doi.org/10.1634/stemcells.2007-0718
  25. Duan Y, Catana A, Meng Y, Yamamoto N, He S, Gupta S, et al. Differenatiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo stem cells. Stem cells 2007; 25: 3058-68 https://doi.org/10.1634/stemcells.2007-0291
  26. Lysy PA, Smets F, Najimi M, Sokal EM. Leukemia inhibitory factor contributes to hepatocyte-like differentiation of human bone marrow mesenchymal stem cells. Differentiation 2008; Jun 13. [Epub ahead of print]
  27. Seo MJ, Suh SY, Bae YC, Jung JS. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun 2005; 328: 258-64 https://doi.org/10.1016/j.bbrc.2004.12.158
  28. Campard D, Lysy PA, Najimi M, Sokal EM. Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology 2008; 134: 878-81 https://doi.org/10.1053/j.gastro.2008.01.065
  29. Kinoshita T, Miyajima A. Cytokine regulation of liver development. Biochim Biophys Acta 2002; 1592: 303-12 https://doi.org/10.1016/S0167-4889(02)00323-3
  30. Tong JZ, Bernard O, Alvarez F. Long-term culture of rat liver cell spheroids in hormonally defined media. Exp Cell Res 1999; 189: 87-92
  31. Kamiya A, Kojima N, Kinoshita T, Sakai Y, Miyaijma A. Maturation of fetal hepatocytes in vitro by extracellular matrices and oncostatin M: induction of tryptophan oxygenase. Hepatology 2002; 35: 1351-9 https://doi.org/10.1053/jhep.2002.33331
  32. Sakai Y, Jiang J, Kojima N, Kinoshita T, Miyajima A. Enhanced in vitro maturation of fetal mouse liver cells with oncostatin M, nicotinamide, and dimethyl sulfoxide. Cell Transplant 2002; 11: 435-41
  33. Sanchez A, Alvarez AM, Pagan R, Roncero C, Vilaro S, Benito M, et al. Fibronectin regulates morphology, cell organization and gene expression of rat fetal hepatocytes in primary culture. J Hepatol 2000; 32: 242-50 https://doi.org/10.1016/S0168-8278(00)80069-0
  34. Strain AJ, Ismail T, Tsubouchi H, Arakaki N, Hishida T, Kitamura N, et al. Native and recombinant human hepatocyte growth factors are highly potent promoters of DNA synthesis in both human and rat hepatocytes. J Clin Invest 1991; 87: 1853-7 https://doi.org/10.1172/JCI115207
  35. Gómez-Lechón MJ, Castelli J, Guillén I, O'Connor E, Nakamura T, Fabra R, et al. Effects of hepatocyte growth factor on the growth and metabolism of human hepatocytes in primary culture. Hepatology 1995; 21: 1248-54 https://doi.org/10.1002/hep.1840210506
  36. Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 2002; 109: 1291-302 https://doi.org/10.1172/JCI0215182
  37. Chien CC, Yen BL, Lee FK, Lai TH, Chen YC, Chan SH, et al. In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem Cells 2006; 24: 1759-68 https://doi.org/10.1634/stemcells.2005-0521
  38. Kamiya A, Kinoshita T, Miyajima A. Oncostatin M and hepatocyte growth factor induce hepatic maturation via distinct signaling pathways. FEBS Lett 2001; 492: 90-4 https://doi.org/10.1016/S0014-5793(01)02140-8
  39. Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Osaki M, et al. Rapid hepatic fate specification of adiposederived stem cells and their therapeutic potential for liver failure. J Gastroenterol and Hepatol 2008; Jun 25. [Epub ahead of print]
  40. Talens-Visconti R, Bonora A, Jover R, Mirabet V, Carbonell F, Castell JV, et al. Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells. World J Gastroenterol 2006; 12: 5834-45 https://doi.org/10.3748/wjg.v12.i36.5834