DOI QR코드

DOI QR Code

Bacterial Community and Biological Nitrate Removal: Comparisons of Autotrophic and Heterotrophic Reactors for Denitrification with Raw Sewage

  • Lee, Han-Woong (Hazardous Substance Research Center-S&SW Louisiana State University) ;
  • Park, Yong-Keun (School of Life Sciences and Biotechnology, Korea University) ;
  • Choi, Eui-So (Department of Civil and Environmental Engineering, Korea University) ;
  • Lee, Jin-Woo (Department of Civil and Environmental Engineering, Korea University)
  • Published : 2008.11.30

Abstract

An autotrophic denitrification reactor (ADR-l) and a heterotrophic denitrification reactor (HDR-2) were operated to remove nitrate and nitrite in an anoxic environment in raw sewage. The $NO_3$-N removal rate of ADR-l was shown to range from 52.8% to 78.7%, which was higher than the $NO_3$-N removal rate of HDR-2. Specific denitrification rates (SDNR) of ADR-l and HDR-2 were 3.0 to 4.0 and 1.1 to $1.2\;mgNO_3$-N/gVSS/h, respectively. From results of restriction fragment length polymorphism (RFLP) of the 16S rRNA gene, Aquaspirillum metamorphum, Alcaligenes defragrans, and Azoarcus sp. were $\beta$-Proteobacteria that are affiliated with denitritying bacteria in the ADR-l. Specifically, Thiobacillus denitrificans was detected as an autotrophic denitrification bacteria. In HDR-2, the $\beta$-Proteobacteria such as Denitritying-Fe-oxidizing bacteria, Alcaligenes defragrans, Acidovorax sp., Azoarcus denitrificans, and Aquaspirillum metamorphum were the main bacteria related to denitrifying bacteria. The $\beta$-and $\alpha$-Proteobacteria were the important bacterial groups in ADR-l, whereas the $\beta$-Proteobacteria were the main bacterial group in HDR-2 based on results of fluorescent in situ hybridization (FISH). The number of Thiobacillus denitrificans increased in ADR-l during the operation period but not in HRD-2. Overall, the data presented here demonstrate that many heterotrophic denitritying bacteria coexisted with autotrophic denitrifying bacteria such as Thiobacillus denitrificans for nitrate removal in ADR-l. On the other hand, only heterotrophic denitritying bacteria were identified as dominant bacterial groups in HDR-2. Our research may provide a foundation for the complete nitrate removal in raw sewage of low-COD concentration under anoxic condition without any external organic carbon or the requirement of post-treatment.

Keywords

References

  1. Amann, R. I., B. J. Binder, R. J. Olson, S. W. Chrisholm, R. Devereux, and D. A. Stahl. 1990. Combination of 16S rRNAtargeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56: 1919-1925
  2. Amann, R., L. Krumholz, and D. A. Stahl. 1990. Fluorescent oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172: 762-770 https://doi.org/10.1128/jb.172.2.762-770.1990
  3. American Public Health Association. 1999. Standard Methods for Examination of Water and Wastewater, 20th Ed. American Public Health Association, Washington, DC
  4. Baek, S. H., K. H. Kim, C. R. Yin, C.O. Jeon, W. T. Im, K. K. Kim, and S. T. Lee. 2003. Isolation and characterization of bacteria capable of degrading phenol and reducing nitrate under lowoxygen conditions. Curr. Microbiol. 47: 462-466
  5. Brettar, I., M. Labrenz, S. Flavier, J. Botel, H. Kuosa, R. Christen, and M. G. Hofle. 2006. Identification of a Thiomicrospira denitrificans-like epsilonproteobacterium as a catalyst for autotrophic denitrification in the central Baltic Sea. Appl. Environ. Microbiol. 72: 1364-1372 https://doi.org/10.1128/AEM.72.2.1364-1372.2006
  6. Brosius, J., J. K. Palmer, H. P. Kennedy, and H. F. Noller. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Nat. Acad. Sci. USA 75: 4801-4805
  7. Carter, J. P., Y. H. Hsiaao, S. Spiro, and D. J. Richardson. 1995. Soil and sediment bacteria capable of aerobic nitrate respiration. Appl. Environ. Microbiol. 61: 2852-2858
  8. Chun, J. 1995. Computer-assisted classification and identification of actinomycetes. PhD thesis. University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
  9. Davies, K. J. P., D. Lloyd, and L. Boddy. 1989. The effect of oxygen on denitrification in Paracoccus denitrificans and Pseudomonas aeruginosa. J. Gen. Microbiol. 135: 2445-2451
  10. Dunbar, J., S. Takala, S. M. Barns, J. A. Davis, and C. R. Kuske. 1999. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl. Environ. Microbiol. 65: 1662-1669
  11. Foss, S., U. Heyen, and J. Harder. 1998. Alcaligenes defragrans sp. nov., description of four strains isolated on alkenoic monoterpenes ((+)-menthene, alpha-pinene, 2-carene, and alpha-phellandrene) and nitrate. Syst. Appl. Microbiol. 21: 237-244 https://doi.org/10.1016/S0723-2020(98)80028-3
  12. Gamble, T. N., M. R. Betlach, and J. M. Tiedje. 1977. Numerically dominant denitrifying bacteria from world soils. Appl. Environ. Microbiol. 33: 926-939
  13. Ginige, M. P., J. Keller, and L. L. Blackall. 2005. Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography. Appl. Environ. Microbiol. 71: 8683-8691 https://doi.org/10.1128/AEM.71.12.8683-8691.2005
  14. Ginige, M. P., P. Hugenholtz, H. Daims, M. Wagner, J. Keller, and L. L. Blackall. 2004. Use of stable-isotope probing, fullcycle rRNA analysis, and fluorescence in situ hybridizationmicroautoradiography to study a methanol-fed denitrifying microbial community. Appl. Environ. Microbiol. 70: 588-596 https://doi.org/10.1128/AEM.70.1.588-596.2004
  15. Haaijer, S. C. M., M. E. W. Van der Welle, M. C. Schmid, L. P. M. Lamers, M. S. M. Jetten, and H. J. M. Op den Camp. 2006. Evidence for the involvement of betaproteobacterial Thiobacilli in the nitrate-dependent oxidation of iron sulfide minerals. FEMS Microbiol. Ecol. 58: 439-448 https://doi.org/10.1111/j.1574-6941.2006.00178.x
  16. Hallin, S. and M. Pell. 1998. Metabolic properties of denitrifying bacteria adapting to methanol and ethanol in activated sludge. Water Res. 32: 13-18 https://doi.org/10.1016/S0043-1354(97)00199-1
  17. Hasselblad, S. and S. Hallin. 1998. Intermittent addition of external carbon to enhance denitrification in activated sludge. Water Sci. Technol. 37: 227-233
  18. Henze, M. 1991. Capabilities of biological nitrogen removal processes from wastewater. Water Sci. Technol. 23: 669-679 https://doi.org/10.2166/wst.1991.0517
  19. Holt, J. G., N. R. Krieg, P. H. A Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's Manual of Determinative Bacteriology. 9th Ed. Williams & Wilkins, Baltimore, U.S.A
  20. Jetten, M. S. M., M. Strous, K. T. van de Pas-Schoonen, J. Schalk, L. G. J. M. Van Dongen, A. A. Van de Graaf, S. Logemann, G. Muyzer, M. C. M. Van Loosdrecht, and J. G. Kuenen. 1999. The anaerobic oxidation of ammonium. FEMS Microbiol. Rev. 22: 421-437 https://doi.org/10.1111/j.1574-6976.1998.tb00379.x
  21. Ju, D.-H., M.-K. Choi, J.-H. Ahn, M.-H. Kim, J.-C. Cho, T. Kim, T. Kim, and J.-O. Ka. 2007. Molecular and ecological analyses of microbial community structures in biofilms of a fullscale aerated up-flow biobead process. J. Microbiol. Biotechnol. 17: 253-261
  22. Jukes, T. H. and C. R. Cantor. 1969. Evolution of protein molecules, pp. 21-132. In H. N. Munro (ed.), Mammalian Protein Metabolism. Academic Press, New York, NY
  23. Jung, Y.-J., C. S. Park, H. G. Lee, and J. Cha. 2006. Isolation of a novel gellan-depolymerizing Bacillus sp. strain YJ-1. J. Microbiol. Biotechnol. 16: 1868-1873
  24. Juretschko, S., A. Loy, A. Lehner, and W. Wagner. 2002. The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst. Appl. Microbiol. 25: 84-99 https://doi.org/10.1078/0723-2020-00093
  25. Kelly, D. P. and A. P. Wood. 2000. Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the betasubclass of the with strain NCIMB 9548 as the type strain. Int. J. Syst. Evo Proteobacteria Microbiol. 50: 7-550
  26. Kim, E. W. and J. H. Bae. 1999. Alkalinity requirement and the possibility of simultaneous heterotrophic denitrification during sulfurutilizing autotrophic denitrification, Proceedings of 7th IAWQ Asia-Pacific Regional Conference. on Asian Waterqual '99, Vol. 1, 583-588, Taipei, Taiwan
  27. Knowles, R. 1982. Denitrification. Microbiol. Rev. 46: 43-70
  28. Koenig, A. and L. H. Liu. 1996. Autotrophic denitrification of landfill leachate using elemental sulphur. Water Sci. Technol. 34: 469-476
  29. Kruithof, J. C., C. A. van Bennekom, H. A. L. Dierx, W. A. M. Hijnen, van J. A. M. Paassen, and J. C. Schippers. 1988. Nitrate removal from groundwater by sulphur/limestone filtration. Water Supply 6: 207-217
  30. Lampe, D. G. and T. C. Zhang. 1996. Evaluation of sulfur-based autotrophic denitrification. Proceedings of the 1996 HSRC/WERC Joint Conference on the Environment, Albuquerque, New Mexico
  31. Lee, H. W., S. Y. Lee, J. O. Lee, H. G. Kim, J. B. Park, E. S. Choi, D. H. Park, and Y. K. Park. 2003. The microbial community analysis of 5-stage BNR process with step feed system. Water Sci. Technol. 48: 135-141
  32. Lee, H. W., S. Y. Lee, J. W. Lee, J. B. Park, E. S. Choi, and Y. K. Park. 2002. Molecular characterization of microbial community in nitrate-removing activated sludge. FEMS Microbiol. Ecol. 41: 85-94 https://doi.org/10.1111/j.1574-6941.2002.tb00969.x
  33. Lee, S. Y., J. B. Bollinger, D. Bezdicek, and A. Ogram. 1996. Estimation of the abundance of an unculturable soil bacterial strain by a competitive quantitative PCR method. Appl. Environ. Microbiol. 62: 3787-3793
  34. Manz, W., R. Amann, M. Vancanneyt, and K. H. Scheifer. 1996. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga- Flavobacter-Bacteroides in natural environment. Microbiology 142: 1097-1106 https://doi.org/10.1099/13500872-142-5-1097
  35. Manz, W., R. Amann, W. Ludwig, M. Wagner, and K. H. Schleifer. 1992. Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: Problems and solutions. Syst. Appl. Microbiol. 15: 593-600 https://doi.org/10.1016/S0723-2020(11)80121-9
  36. O'Hara, G. W. and R. M. Daniel. 1985. Rhizobail denitrification: A review. Soil Biol. Biochem. 17: 1-9 https://doi.org/10.1016/0038-0717(85)90082-3
  37. Oh, S. E., K. S. Kim, H. C. Choi, J. Cho, and I. S. Kim. 1999. Kinetics and physiology of autotrophic denitrification by denitrifying sulfur bacteria, Proceedings of 7th IAWQ Asia-Pacific Regional conference. on Asian Waterqual '99, Vol. 1, 173-178, Taipei, Taiwan
  38. Philippot, L. 2002. Denitrifying genes in bacterial and archaeal genomes. Biochim. Biophys. Acta 1577: 355-376 https://doi.org/10.1016/S0167-4781(02)00420-7
  39. Pillay, D., B. Pillay, A. O. Olaniran, W. H. L. Stafford, and D. A. Cowan. 2007. Microbial community profiling in cis- and trans-dichloroethene enrichment systems using denaturing gradient gel electrophoresis. J. Microbiol. Biotechnol. 17: 560-570
  40. Porter, K. G. and Y. S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943-948 https://doi.org/10.4319/lo.1980.25.5.0943
  41. Robertson, L. A. and J. G. Kuene. 1984. Aerobic denitrification: A controversy revived. Arch. Microbiol. 139: 351-354 https://doi.org/10.1007/BF00408378
  42. Roller, C., M. Wagner, R. Amann, W. Ludwig, and K.-H. Schleifer. 1994. In situ probing of Gram-positive bacteria with high DNA G+C content using 23S rRNA-targeted oligonucleotides. Microbiology 140: 2849-2858 https://doi.org/10.1099/00221287-140-10-2849
  43. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  44. Schleifer, K. H., R. Amann, W. Ludwig, C. Rothemund, N. Springer, and S. Dorn. 1992. Nucleic acid probes for the identification and in situ detection of pseudomonas, pp. 127- 134. In E. Galli, S. silver, and B. Witholt (eds.). Pseudomonas: Molecular Biology and Botechnology. American Society for Microbiology, Washinton, DC
  45. Schulze, R., S. Spring, R. Amann, I. Huber, W. Ludwig, K. H. Schleifer, and P. Kampfer. 1999. Genotypic diversity of Acidovorax strains isolated from activated sludge and description of Acidovorax defluvii sp. nov. Syst. Appl. Microbiol. 22: 205-214 https://doi.org/10.1016/S0723-2020(99)80067-8
  46. Snaidr, J., R. Amann, I. Huber, W. Ludwig, and K. H. Schleifer. 1997. Phylogenetic analysis and in situ identification of bacteria in acti ated sludge. Appl. Environ. Microbiol. 63: 2884-2896
  47. Strous, M., J. A. Fuerst, E. H. Kramer, S. Logemann, G. Muyzer, K. T. van de Pas-Schoonen, R. Webb, J. G. Kuenen, and M. S. Jetten. 1999. Missing lithotroph identified as new planctomycete. Nature 400: 446-449 https://doi.org/10.1038/22749
  48. Sublette, K. L. and N. D. Sylvester. 1987. Oxidation of hydrogen sulfide by Thiobacillus denitrificas: Desulfurization of natural gas. Biotechno. Bioeng. 29: 249-257 https://doi.org/10.1002/bit.260290216
  49. Tal, Y., J. E. Watts, and H. J. Schreier. 2006. Anaerobic ammoniumoxidizing (anammox) bacteria and associated activity in fixed-film biofilters of a marine recirculating aquaculture system. Appl. Environ. Microbiol. 72: 2896-2904 https://doi.org/10.1128/AEM.72.4.2896-2904.2006
  50. Tal, Y., J. E. Watts, S. B. Schreier, K. R. Sowers, and H. J. Schreier. 2003. Characterization of the microbial community and nitrogen transformation processes associated with moving bed bioreactors in closed recirculated mariculture systems. Aquaculture 215: 187-202 https://doi.org/10.1016/S0044-8486(02)00372-1
  51. Tiedje, J. M. 1988. Ecology of denitrification and dissimilative nitrate reduction to ammonia, pp. 179-243. In: Bioloy of Anaerobic Microorganisms, Wiley, New York
  52. Till, B. A., L. J. Weathers, and P. J. J. Alvarez. 1998. Fe (0)-supported autotrophic denitrification. Environ. Sci. Technol. 32: 634-639 https://doi.org/10.1021/es9707769
  53. Timmer-Ten Hoor, A. 1981. Cell yield and bioenergetics of Thiomicrospira denitrificans compared with Thiobacillus denitrificans. Antonie van Leeuwenhoek 47: 231-243 https://doi.org/10.1007/BF00403394
  54. van Loosdrecht, M. C. M. and M. S. M. Jetten. 1998. Microbiological conversions in nitrogen removal. Water Sci. Technol. 38: 1-7
  55. Wirsen, C. O., S. M. Sievert, C. M. Cavanaugh, S. J. Molyneaux, A. Ahmad, L. T. Taylor, E. F. DeLong, and C. D. Taylor. 2002. Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl. Environ. Microbiol. 68: 316-325 https://doi.org/10.1128/AEM.68.1.316-325.2002
  56. Ye, R. W., D. Haas, J. O. Ka, V. Krishnapillai, A. Zimmermann, C. Baird, and J. M. Tiedje. 1995. Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr. J. Bacteriol. 177: 3606-3609 https://doi.org/10.1128/jb.177.12.3606-3609.1995
  57. Zhou, J., M. R. Fries, J. C. Chee-Sanford, and J. M. Tiedje. 1995. Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth of toluene and description of Azoarcus tolulyticus sp. nov. Int. J. Syst. Bacteriol. 45: 500-506 https://doi.org/10.1099/00207713-45-3-500
  58. Zumft, W. G. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61: 533-616

Cited by

  1. Iron shavings supported biological denitrification in sequencing batch reactor vol.49, pp.1, 2012, https://doi.org/10.1080/19443994.2012.708204
  2. Identification and quantification of microbial populations in activated sludge and anaerobic digestion processes vol.36, pp.1, 2008, https://doi.org/10.1080/09593330.2014.934745
  3. Hydrogen-based membrane biofilm reactor for tetracycline removal: biodegradation, transformation products, and microbial community vol.23, pp.21, 2008, https://doi.org/10.1007/s11356-016-7370-1
  4. Bio-Minerals Combined with Bacillus cereus for Enhancing the Nitrogen Removal Efficiency under Aerobic Conditions vol.8, pp.6, 2008, https://doi.org/10.3390/min8060253
  5. Broad Phylogenetic Diversity Associated with Nitrogen Loss through Sulfur Oxidation in a Large Public Marine Aquarium vol.84, pp.20, 2018, https://doi.org/10.1128/aem.01250-18
  6. Performance of sulfur-based autotrophic denitrification and denitrifiers for wastewater treatment under acidic conditions vol.294, pp.None, 2008, https://doi.org/10.1016/j.biortech.2019.122176