References
- http://www.the-innovation-group.com/ChemProfiles/Propylene%20Glycol.htm
- Altaras, N. E. and D. C. Cameron. 1999. Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl. Environ. Microbiol. 65: 1180-1185
- Altaras, N. E. and D. C. Cameron. 2000. Enhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli. Biotechnol. Prog. 16: 940-946 https://doi.org/10.1021/bp000076z
- Amberg, D. C., D. Burke, and J. N. Strathern (eds.). 2005. Isolation and characterization of auxotrophic, temperature-sensitive, and osmotic-sensitive mutants, pp. 11-19. In: Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, New York. U.S.A
- Badia, J., J. Ros, and J. Aguilar. 1985. Fermentation mechanism of fucose and rhamnose in Salmonella typhimurium and Klebsiella pneumoniae. J. Bacteriol. 161: 435-437
- Bennett, G. N. and K. Y. San. 2001. Microbial formation, biotechnological production and applications of 1,2-propanediol. Appl. Microbiol. Biotechnol. 55: 1-9 https://doi.org/10.1007/s002530000476
- Cameron, D. C. and C. L. Cooney. 1986. A novel fermentation: The production of R(-)-1,2-propanediol and acetol by Clostridium thermosaccharolyticum. Bio/Technology 4: 651-654 https://doi.org/10.1038/nbt0786-651
- Cameron, D. C., N. E. Altaras, M. L. Hoffman, and A. J. Shaw. 1998. Metabolic engineering of propanediol pathways. Biotechnol. Prog. 14: 116-125 https://doi.org/10.1021/bp9701325
- Compagno, C., F. Boschi, and B. M. Ranzi. 1996. Glycerol production in a triose phosphate isomerase deficient mutant of Saccharomyces cerevisiae. Biotechnol. Prog. 12: 591-595 https://doi.org/10.1021/bp960043c
- Frosberg, C. D. and L. N. Gibbins. 1987. Metabolism of rhamnose and other sugars by strains of Clostridium acetobutylicum and other Clostridium species. Can. J. Microbiol. 33: 21-26 https://doi.org/10.1139/m87-004
- Gonzalez, B., J. Francois, and M. Renaud. 1997. A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13: 1347-1355 https://doi.org/10.1002/(SICI)1097-0061(199711)13:14<1347::AID-YEA176>3.0.CO;2-O
- Huang, K., F. B. Rudolph, and G.. N. Bennett. 1999. Characterization of methylglyoxal synthase from Clostridium acetobutylicum ATCC 824 and its use in the formation of 1,2- propanediol. Appl. Environ. Microbiol. 65: 3244-3247
- Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163-168
- Kim, J. C., S. W. Kang, J. S. Lim, Y. S. Song, and S. W. Kim. 2006. Stimulation of cephalosporin C production by Acremonium chrysogenum M35 with fatty acids. J. Microbiol. Biotechnol. 16: 1120-1224
- Lee, J. H., J. S. Lim, Y. S. Song, S. W. Kang, C. Park, and S. W. Kim. 2007. Optimization of culture medium for lactosucrose ((4)Gbeta- D-galactosylsucrose) production by Sterigmatomyces elviae mutant using statistical analysis. J. Microbiol. Biotechnol. 17: 1996-2004
- Lee, W. and N. A. DaSilva. 2006. Application of sequential integration for metabolic engineering of 1,2-propanediol production in yeast. Metab. Eng. 8: 58-65 https://doi.org/10.1016/j.ymben.2005.09.001
- Lee, T. H., M. D. Kim, and J. H. Seo. 2006. Development of reusable split URA3-marked knockout vectors for Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 16: 979-982
- Lin, E. C. C. 1996. Dissimilatory pathway for sugars, polyols, and carboxylates, pp. 307-342. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Wshington, DC, U.S.A
- Sutherland, F. C., F. Lages, C. Lucas, K. Luyten, J. Albertyn, S. Hohmann, B. A. Prior, and S. G. Kilian. 1997. Characteristics of Fps1-dependent and -independent glycerol transport in Saccharomyces cerevisiae. J. Bacteriol. 179: 7790-7795 https://doi.org/10.1128/jb.179.24.7790-7795.1997
Cited by
- Production of 1,2-Propanediol from Glycerol in Saccharomyces cerevisiae vol.21, pp.8, 2008, https://doi.org/10.4014/jmb.1103.03009
- Metabolic engineering of 1,2-propanediol pathways in Corynebacterium glutamicum vol.90, pp.5, 2008, https://doi.org/10.1007/s00253-011-3190-x
- Metabolic engineering of Escherichia coli for enhanced biosynthesis of poly(3-hydroxybutyrate) based on proteome analysis vol.35, pp.10, 2008, https://doi.org/10.1007/s10529-013-1246-y
- Transformation of Biomass into Commodity Chemicals Using Enzymes or Cells vol.114, pp.3, 2008, https://doi.org/10.1021/cr400309c
- Biotechnologie von Morgen: metabolisch optimierte Zellen für die bio‐basierte Produktion von Chemikalien und Treibstoffen, Materialien und Gesundheitsprodukten vol.127, pp.11, 2008, https://doi.org/10.1002/ange.201409033
- Advanced Biotechnology: Metabolically Engineered Cells for the Bio‐Based Production of Chemicals and Fuels, Materials, and Health‐Care Products vol.54, pp.11, 2008, https://doi.org/10.1002/anie.201409033
- Synthesis of chemicals by metabolic engineering of microbes vol.44, pp.11, 2008, https://doi.org/10.1039/c5cs00159e
- Designing a New Entry Point into Isoprenoid Metabolism by Exploiting Fructose-6-Phosphate Aldolase Side Reactivity of Escherichia coli vol.6, pp.7, 2008, https://doi.org/10.1021/acssynbio.7b00072
- Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery vol.102, pp.9, 2008, https://doi.org/10.1007/s00253-018-8896-6
- DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals vol.118, pp.1, 2008, https://doi.org/10.1021/acs.chemrev.6b00804
- Combination of Three Methods to Reduce Glucose Metabolic Rate For Improving N-Acetylglucosamine Production in Saccharomyces cerevisiae vol.66, pp.50, 2008, https://doi.org/10.1021/acs.jafc.8b04291