References
- Bare-Viveros, J. L., J. Osuna, G. Hernandez-Chavez, X. Soberon, F. Bolivar, and G. Gosset. 2004. Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli. Biotechnol. Bioeng. 87: 516-524 https://doi.org/10.1002/bit.20159
- Bockmann, J., H. Heuwl, and J. W. Lengeler. 1992. Characterization of a chromosomally encoded, non-PTS metabolic pathway for sucrose utilization in Escherichia coli EC3132. Mol. Gen. Genet. 235: 22-32 https://doi.org/10.1007/BF00286177
- Bradley, D. 2005. Star role for bacteria in controlling flu pandemic? Nat. Rev. Drug Discov. 4: 945-946 https://doi.org/10.1038/nrd1917
- Chandran, S. S., J. Yi, and K. M. Draths. 2003. Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol. Prog. 19: 808-814 https://doi.org/10.1021/bp025769p
- Datsenko, K. A. and B. L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645
- De Clercq, E. 2002. Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov. 1: 13-25 https://doi.org/10.1038/nrd703
- Draths, K. M., D. L. Phmpliano, D. L. Conley, J. W. Frost, A. Berry, G. L. Disbrow, R. J. Staversk, and J. C. Lievense. 1992. Biocatalytic synthesis of aromatics from D-glucose: The role of transketolase. J. Am. Chem. Soc. 114: 3956-3962 https://doi.org/10.1021/ja00036a050
- Draths, K., D. R. Knop, and J. W. Frost. 1999. Shikimic acid and quininc acid: Replacing isolation from plant sources with recombinant microbial biocatalysis. J. Am. Chem. Soc. 121: 1603-1604 https://doi.org/10.1021/ja9830243
- Driessen, M., P. W. Postma, and K. van Dam. 1987. Energetics of glucose uptake in Salmonella typhimurium. Arch. Microbiol. 146: 358-361 https://doi.org/10.1007/BF00410936
- Feist, A. M., C. S. Henry, J. L. Reed, M. Krummenacker, A. R. Joyce, P. D. Karp, L. J. Broadbetl, V. Hatzimanikatis, and B. O. Palsson. 2007. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3: 1-18
- Flores, N., J. Xiao, A. Berry, F. Bolivar, and F. Valle. 1996. Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat. Biotechnol. 14: 620-623 https://doi.org/10.1038/nbt0596-620
- Gosset, G., J. Yong-Xiao, and A. Beery. 1996. A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in Escherichia coli. J. Ind. Microbiol. 17: 47-52 https://doi.org/10.1007/BF01570148
- Hendereson, P. J. and E. O. Davis. 1987. The cloning and DNA sequence of the gene xylE for xylose-proton symport in Escherichia coli K12. J. Biol. Chem. 262: 13928-13932
- Hong, S. H., S. Y. Moon, and S. Y. Lee. 2003. Prediction of maximum yields of metabolites and optimal pathways for their production by metabolic flux analysis. J. Microbiol. Biotechnol. 13: 571-577
- Honisch, C., A. Raghunathan, C. R. Cantor, B. O. Palsson, and D. van den Boom. 2004. High-throughput mutation detection underlying adaptive evolution of Escherichia coli-K12. Genome Res. 14: 2495-2502 https://doi.org/10.1101/gr.2977704
- Johansson, L., A. Lindskog, G. Silfversparre, C. Cimander, K. F. Nielsen, and G. Liden. 2005. Shikimic acid production by a modified strain of E. coli (W3110.shik1) under phosphatelimited and carbon-limited conditions. Biotechnol. Bioeng. 92: 541-552 https://doi.org/10.1002/bit.20546
- Kim, C. U., W. Lew, M. A. Williams, L. Zhang, H. Liu, S. Swaminathan, et al. 1997. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: Design, synthesis, and structural analysis of carbocyclic sialic acid analogs with potent anti-influenza activity. J. Am. Chem. Soc. 119: 681-690 https://doi.org/10.1021/ja963036t
- Kim, P. J., D.-Y. Lee, T. Y. Kim, K. H. Lee, H. Jeong, S. Y. Lee, and S. Park. 2007. Metabolite-essentiality elucidates robustness of Escherichia coli metabolism. Proc. Natl. Acad. Sci. USA 104: 13638-13642
- Knop, D. R., K. M. Draths, S. S. Chandra, J. L. Barker, R. V. Daeniken, W. Weber, and J. W. Frost. 2001. Hydroaromatic equilibration during biosynthesis of shikimic acid. J. Am. Chem. Soc. 123: 10173-10182 https://doi.org/10.1021/ja0109444
- Lee, D.-Y., H. Yun, S. Park, and S. Y. Lee. 2003. MetaFluxNet: The management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformatics 19: 2144-2146 https://doi.org/10.1093/bioinformatics/btg271
- Lu, J. and J. C. Liao. 1997. Metabolic engineering and control analysis for production of aromatics: Role of transaldolase. Biotechnol. Bioeng. 53: 132-138 https://doi.org/10.1002/(SICI)1097-0290(19970120)53:2<132::AID-BIT2>3.0.CO;2-P
- Miller, J. E., K. C. Backman, J. M. O'Connor, and T. R. Hatch. 1987. Production of phenylalanine and organic acids by phosphoenolpyruvate carboxylase-deficient mutants of Escherichia coli. J. Ind. Microbiol. 2: 143-149 https://doi.org/10.1007/BF01569421
- Patnaik, R. and J. C. Liao. 1994. Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl. Environ. Microbiol. 6: 3903-3908
- Patnaik, R., W. D. Roof, R. F. Young, and J. C. Liao. 1992. Stimulation of glucose catabolism in Escherichia coli by a potential futile cycle. J. Bacteriol. 174: 7527-7532 https://doi.org/10.1128/jb.174.23.7527-7532.1992
- Pharkya, P., A. P. Burgard, and C. D. Maranas. 2003. Exploring the overexpression of amino acids using the bilevel optimization framework OptKnock. Biotechnol. Bioeng. 84: 887-899 https://doi.org/10.1002/bit.10857
- Reed, J. L. and B. O. Palsson. 2004. Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: Assessment of correlated reaction subsets that comprise network states. Genome Res. 14: 1797-1805 https://doi.org/10.1101/gr.2546004
- Reed, J. L., T. D. Vo, C. H. Schilling, and B. O. Palsson. 2003. An expanded genome-scale model of Escherichia coli K- 12(iJR904 GSM/GPR). Genome Biol. 4: R54.1-R54.12 https://doi.org/10.1186/gb-2003-4-9-r54
- Schmid, K., M. Schupfner, and R. Schmitt. 1982. Plasmidmediated uptake and sucrose metabolism in Escherichia coli K12: Mapping of the scr genes of pUR400. Mol. Microbiol. 2: 1-8 https://doi.org/10.1111/j.1365-2958.1988.tb00001.x
- Schuetz, R., L. Kuepfer, and U. Sauer. 2007. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3: 1-15
- Stephanopoulos, G. and J. J. Vallino. 1991. Network rigidity and metabolic engineering in metabolite overproduction. Science 252: 1675-1681 https://doi.org/10.1126/science.1904627
- Sumiya, M., E. O. Davis, L. C. Packman, T. P. McDonald, and P. J. Henderson. 1995. Molecular genetics of a receptor protein for D-xylose, encoded by the gene xylF in Escherichia coli. Receptors Channels 3: 117-128
- Varma, A. and B. O. Palsson. 1994. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 60: 3724-3731
- Weaver, L. M. and K. M. Herrmann. 1990. Cloning of an aroF allele encoding a tyrosine-insensitive 3-deoxy-D-arabionheptulosonate 7-phosphate synthase. J. Bacteriol. 172: 6581-6584 https://doi.org/10.1128/jb.172.11.6581-6584.1990
- Yi, J., K. Li, K. M. Draths, and J. W. Frost. 2002. Modulation of phosphoenolpyruvate synthase expression increases shikimate pathway product yields in E. coli. Biotechnol. Prog. 18: 1141-1148 https://doi.org/10.1021/bp020101w
- Yi, J., K. M. Draths, and J. W. Frost. 2003. Altered glucose transport and shikimate pathway product yields in E. coli. Biotechnol. Prog. 19: 1450-1459 https://doi.org/10.1021/bp0340584
Cited by
- A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid vol.3, pp.7, 2008, https://doi.org/10.1002/cssc.201000111
- A bacterial platform for fermentative production of plant alkaloids vol.2, pp.1, 2008, https://doi.org/10.1038/ncomms1327
- Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS vol.12, pp.None, 2008, https://doi.org/10.1186/1475-2859-12-86
- Expanding horizons of shikimic acid : Recent progresses in production and its endless frontiers in application and market trends vol.97, pp.10, 2013, https://doi.org/10.1007/s00253-013-4840-y
- Fermentative production of shikimic acid: a paradigm shift of production concept from plant route to microbial route vol.36, pp.11, 2008, https://doi.org/10.1007/s00449-013-0940-4
- Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds vol.13, pp.None, 2014, https://doi.org/10.1186/s12934-014-0126-z
- (R,S)-Tetrahydropapaveroline production by stepwise fermentation using engineered Escherichia coli vol.4, pp.None, 2008, https://doi.org/10.1038/srep06695
- Metabolic engineering of Escherichia coli to enhance shikimic acid production from sorbitol vol.30, pp.9, 2008, https://doi.org/10.1007/s11274-014-1679-z
- Recombinant expression of glpK and glpD genes improves the accumulation of shikimic acid in E. coli grown on glycerol vol.30, pp.12, 2014, https://doi.org/10.1007/s11274-014-1753-6
- Microbial transformation of quinic acid to shikimic acid by Bacillus megaterium vol.1, pp.None, 2008, https://doi.org/10.1186/s40643-014-0007-7
- Shikimic acid, a base compound for the formulation of swine/avian flu drug: statistical optimization, fed-batch and scale up studies along with its application as an antibacterial agent vol.107, pp.2, 2008, https://doi.org/10.1007/s10482-014-0340-z
- Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources vol.5, pp.None, 2008, https://doi.org/10.1038/srep13670
- Rational engineering of multiple module pathways for the production of L-phenylalanine in Corynebacterium glutamicum vol.42, pp.5, 2008, https://doi.org/10.1007/s10295-015-1593-x
- Improvement of shikimic acid production in Escherichia coli with growth phase-dependent regulation in the biosynthetic pathway from glycerol vol.33, pp.2, 2008, https://doi.org/10.1007/s11274-016-2192-3
- Heterologous biosynthesis of natural product naringenin by co-culture engineering vol.2, pp.3, 2017, https://doi.org/10.1016/j.synbio.2017.08.003
- Production and Synthetic Modifications of Shikimic Acid vol.118, pp.20, 2008, https://doi.org/10.1021/acs.chemrev.8b00350
- Metabolic modeling and response surface analysis of an Escherichia coli strain engineered for shikimic acid production vol.12, pp.1, 2008, https://doi.org/10.1186/s12918-018-0632-4
- Production of p -amino- L -phenylalanine ( L -PAPA) from glycerol by metabolic grafting of Escherichia coli vol.17, pp.None, 2008, https://doi.org/10.1186/s12934-018-0996-6
- Bioprocess Optimization for the Production of Aromatic Compounds With Metabolically Engineered Hosts: Recent Developments and Future Challenges vol.8, pp.None, 2008, https://doi.org/10.3389/fbioe.2020.00096
- Metabolic engineering of Escherichia coli for production of chemicals derived from the shikimate pathway vol.47, pp.6, 2008, https://doi.org/10.1007/s10295-020-02288-2
- Biocatalytic routes to anti-viral agents and their synthetic intermediates vol.50, pp.3, 2008, https://doi.org/10.1039/d0cs00763c