Bacillus subtilis AH18의 고추역병 방제능과 $Siderophore_{AH18}$의 구조분석

Structural Identification of $Siderophore_{AH18}$ from Bacillus subtilis AH18, a Biocontrol agent of Phytophthora Blight Disease in Red-pepper

  • 우상민 (영남대학교 응용미생물학과) ;
  • 김상달 (영남대학교 응용미생물학과)
  • Woo, Sang-Min (Department of Applied Microbiology, Yeungnam University) ;
  • Kim, Sang-Dal (Department of Applied Microbiology, Yeungnam University)
  • 발행 : 2008.12.28

초록

Bacillus subtilis AH18균주는 auxin, siderophore 그리고 cellulase를 동시에 생산하는 PGPR 균주이자 생물방제균주로 항진균성 siderophore의 특성을 확인한 결과 catechol type의 siderophore로 확인하였다. $Siderophore_{AH18}$ 의 정제는 Amberlite XAD-2, sephadex LH-20 column chromatography 그리고 HPLC를 통해 정제 및 정제여부를 확인하였으며, GC-MS, $^1H$-NMR, 그리고 $^{13}C$-NMR을 통해 구조 및 분자량을 확인하였다. 그 결과 B. subtilis AH18이 생산하는 siderophore은 분자량 883의 bacillibactin임을 확인하였으며, 포자발아억제활성을 나타냄을 확인하였다. B. subtilis AH18은 P. capsici에 의한 고추역병을 효과적으로 방제하였으며(방제력 55%), 이는 bacillibactin에 의한 효과가 포함되리라 추측된다.

The siderophore ($siderophore_{AH18}$) of Bacillus subtilis AR18 was determined to be one of catechol type and purified by using Amberlite XAD-2, Sephadex LR-20 chromatography, and reversed-phase RPLC. The $Siderophore_{AH18}$ was identified bacillibactin with its structure by GC-MS, $^1H$-NMR, and $^{13}C$-NMR. $Siderophore_{AH18}$ (bacillibactin) had been confirmed its molecular weight of 883 and chemical structure of $(2,3-dihydroxybenzoate-glycine-threonine)_3$. Purified $siderophore_{AH18}$ showed strong biocontrol ability towards the spore of Phytophthora capsici on PDA and able to effectively suppress (55%) P. capsici causing red-pepper blight in the pot in vivo test.

키워드

참고문헌

  1. Arnow, L. E. 1937. Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J. Biol. Chem. 118: 531-537
  2. Bergeron, R. J., and J. S. McManis. 1991. Synthesis of catecholamide and hydroxamate siderophore. In CRC Hanbook of Microbial Iron Chelates, (ed) G. Winkelmann, CRC Press, Boca Raton, F1. pp. 271-307
  3. Imamura, N., T. Ishikawa, T. Ohtsuka, K. Yamamoto, M. Dekura, H. Fukami, and R. Nishida. 2000. An antibiotic from Penicillium sp. covering the cocoon of the leaf-rolling moth, dactylioglypha tonica. Biosci. Biotech. Bioch. 64: 2216-2217 https://doi.org/10.1271/bbb.64.2216
  4. Crosa, J. H. 1989. Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol. Rev. 53: 517-530
  5. Csaky, T. 1948. On the estimation of bound hydroxylamine. Acta Chem. Scand. 2: 450-454 https://doi.org/10.3891/acta.chem.scand.02-0450
  6. Garner, B. L., J. E. L. Arceneaux, and B. Rowe Byers. 2004. Temperature control of 3,4-dihydroxybenzoate (potocatechuate)- based siderophore in Bacillus anthracis. Curr. Microbiol. 49: 89-94
  7. Glick, B. R., C. L. Patten, G. Patten, and D. M. Penrose. 1999. Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press. Canada
  8. Han, K. H., C. U. Lee, and S. D. Kim. 1999. Antagonistic role of chitinase and antibiotic produced by Promicromonospora sp. KH-28 toward F. oxysporum. Kor. J. Appl. Microbial. Biotechnol. 27: 349-353
  9. Hider, R. C. 1984. Siderophore mediated absorption of iron. Struct. Bonding. 58: 25-87 https://doi.org/10.1007/BFb0111310
  10. Miethke, M., O. Klots, U. Linne, J. J. May, C. L. Beckering, and M. A. Marahiel. 2006. Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol. Microbiol. 61: 1413-1427 https://doi.org/10.1111/j.1365-2958.2006.05321.x
  11. Jeong, D. H., K. D. Park, S. H. Kim, K. R. Kim, S. W. Choi, J. T. Kim, K. H. Choi, and J. H. Kim. 2004. Identification of Streptomyces sp. producing antibiotics against phytopathogenic fungi, and its structure. J. Microbiol. Biotechnol. 14: 212-215
  12. Jung, H. K., J. C. Ryoo, and S. D. Kim. 2005. A multimicrobial biofungicide for the biological control against several important plant pathogenic fungi. J. Kor. Soc. Appl. Biol. Chem. 48: 40-47
  13. Jung, H. K., J. R. Kim, S. M. Woo, and S. D. Kim. 2006. An auxin producing plant growth promoting rhizobacterium Bacillus subtilis AH18 which has siderophore-Producing biocontrol activity. Kor. J. Microbiol. Biotechnol. 34: 94-100
  14. Jung, H. K., J. R. Kim, S. M. Woo, and S. D. Kim. 2006. Selection of the auxin, siderophore, and cellulase-producing PGPR, Bacillus licheniformis K11 and its plant growth promoting mechanisms. J. Kor. Soc. Appl. Biol. Chem. 50:23-28
  15. Jung, H. K., and S. D. Kim. 2004. Selection and antaginistic mechanism of Pseudomonas fluorescens 4059 against phytophthora blight disease. Kor. J. Microbiol. Biotechnol. 32: 312-316
  16. Kang, S. J., J. H. Kim, and G. J. Joo. 2005. Isolation of antagonistic bacteria against Fusarium oxysporum and physicochemical properties of compost mixed with microbial formulation. Kor. J. Hort. Sci. Technol. 23: 342-350
  17. Katiyar, V., and G. Reeta. 2004. Improved plant growth from seed bacterization using siderophore overproducing cold resistant mutant of Pseudomonas fluorescens. J. Microbiol. Biotechnol. 14: 653-657
  18. Kim. K. Y., and S. D. Kim. 1997. Biological control of Pyricularia aryzae blast spot with the antibiotic substances produced by Bacillus sp. KL-3. Kor. J. Appl. Microbiol. Biotechnol. 25: 396-402
  19. Kwon, D. H., J. H. Choe, H. K. Jeong, J. H. Lim, G. J. Ju, and S. D. Kim. 2004. Selection and identification of auxinproducing plant growth promoting rhizobacteria having phytopathogen antagonistic activity. J. Kor. Soc. Appl. Biol. Chem. 47: 17-21
  20. Lee, E. T., and S. D. Kim. 2000. Selection and antifungal activity of antagonistic bacterium Pseudomonas sp. 2112 against red-pepper rotting Phytophthora capsici. Kor. J. Appl. Microbiol. Biotechn. 28: 334-340
  21. Lee, I. K., C. J. Kim, S. D. Kim, and I. D. Yoo. 1990. Antifungal antibiotic against fruit rot disease of red pepper form Streptomyces parvullus. Kor. J. Appl. Microbiol. Biotechn. 18: 142-147
  22. Lee, J. M., E. S. Do, S. B. Baik, and S. C. Chun. 2003. Effect of organic amendments on efficacy of biological control of seedling damping-off of cucumber with several microbial products. The Kor. J. Mycol. 31: 44-49 https://doi.org/10.4489/KJM.2003.31.1.044
  23. Lee, J. M., H. S. Lim, T. H. Chang, and S. D. Kim. 1999. Isolation of siderophore-producing Pseudomonas fluorescens GL7 and its biocontrol activity against root-rot disease. Kor. J. Appl. Microbiol. Biotechn. 27: 427-432
  24. Lee, M. W. 1997. Root colonization by beneficial Pseudomonas spp. and bioassay of suppression of Fusarium wilt of radish. The Kor. J. Mycol. 25: 10-20
  25. Lee S. Y., S. B. Lee, Y. K. Kim, and H. G. Kim. 2004. Effect of agrochemicals on mycelial growth and spore germination of a hyperparasite, Ampelomyces quisqualis 94013 for controlling cucumber powdery mildew. Kor. J. Pesti. Sci. 8: 71-78
  26. Leoffler, W. J., S. M. Tschen, N. Vanittanakom, M. Kugler, E. Knorpp, T. F. Hsieh, and T. G. Wu. 1986. Antifungal effects of bacilysin and fengymycin from Bacillus subtilis F29-3: a comparison with activaties of other Bacillus antibiotics. J. Phytopathol. 115: 204-213 https://doi.org/10.1111/j.1439-0434.1986.tb00878.x
  27. Lim, H. S., J. M. Lee, and S. D. Kim. 2002. A plant growthpromoting Pseudomonas fluorescens GL20: Mechanism for disease suppression, outer membrane receptors for ferric siderophore, and genetic improvement for increased biocontrol efficacy. J. Microbiol. Biotechnol. 12: 249-257
  28. Lim, H. S. and S. D. Kim 1995. The role and characterization of ${\beta}-1,3-glucanase$ in biocontrol of Fusarium solani by Pseudomonas stutzeri. J. Microbiol. 33: 295-304
  29. Lim, H. S. and S. D. Kim. 1997. Role of siderophore in biocontrol of Fusarium solani and enhanced growth response of Bean by Pseudomonas fluorescens GL20. J. Microbiol. Biotechnol. 7: 13-20
  30. Liu, L., J. W. Kloepper, and S. Tuzun. 1995. Induction of systemic resistance in cucumber by plant growth-promoting rhizobacteria: duration of protection and effect of host resistance on protection and root colonization. Phytopathology. 85: 1064-1068 https://doi.org/10.1094/Phyto-85-1064
  31. Neilands, J. B. 1984. Siderophores of bacteria and fungi. Microbiol. Sci. 1: 9-14
  32. Paulitz, T. C. and J. E. Loper. 1991. Lack of a role for fluorescent siderphore production in the biological control of Phythium damping-off of cucumber by a strain of Pseudomonas putida. Phytopathology. 81: 930-935 https://doi.org/10.1094/Phyto-81-930
  33. Payne, S. M. 1994. Detection, isolation, and characterization of siderophore. Method. Enzymol. 235: 329-344 https://doi.org/10.1016/0076-6879(94)35151-1
  34. Ping, L., and W. Boland. 2004. Signals from the underground: bacrerial volatiles promote growth in Arabidopsis. Trends Pla. Sic. 9: 263-266 https://doi.org/10.1016/j.tplants.2004.04.008
  35. Scher, F. M., and R. Baker. 1982. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology. 72: 1567-1573 https://doi.org/10.1094/Phyto-72-1567
  36. Schottel, J. L., K. Shimizu, and L. L. Kinkel. 2001. Relationships of in vitro pathogen inhibition and soil colonization to potato scab biocontrol by antagonistic Streptomyces spp. Biol. Control. 20: 102-112 https://doi.org/10.1006/bcon.2000.0893
  37. Schyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophore. Anal. Biochem. 160: 47-56 https://doi.org/10.1016/0003-2697(87)90612-9
  38. Sturtevant, D. B. and B. J. Taller. 1989. Cytokinin production by Rhizobium japonicum. Plant Physiol. 39: 1247-1452
  39. Temirov, Y. V., T. Z. Esikova, I. A. Kashparov, T. A. Balashova, L. M. Vinokurov, and Y. B. Vinokurov. 2006. A catecholic siderophore produced by the thermoresistant Bacillus licheniformis VK21 strain. Rus. J. Bioorg. Chem. 26: 542-549
  40. van Loon, L. C., P. A. H. M. Bakker, and C. M. Pieterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathology. 36: 453-483 https://doi.org/10.1146/annurev.phyto.36.1.453
  41. Weinberg, E. D. 1974. Iron and susceptibility to infectious disease. Science. 184: 952-956 https://doi.org/10.1126/science.184.4140.952
  42. Woo, S. M., H. K. Jung, and S. D. Kim. 2006. Cloning and Characterization of a cellulase gene from a plant growth promoting rhizobacterium, Bacillus subtilis AH18 against phytophthora blight disease in red-pepper. Kor. J. Microbial. Biotechn. 34: 311-317
  43. Woo, S. M., J. U. Woo, and S. D. Kim. 2007. Purification and characterization of the sidrophore from Bacillus licheniformis K11, a multi-functional plant growth promoting rhizobacterium. Kor. J. Microbial. Biotechn. 35: 128-134
  44. Woo, S. M. and S. D. Kim. 2007. Confirmation of nonsiderophore antifungal substance and cellulase from Bacillus licheniformis K11 containing antagonistic ability and plant growth promoting activity. J. Life. Science. 17: 983-989 https://doi.org/10.5352/JLS.2007.17.7.983
  45. Yun, G. H., E. T. Lee, and S. D. Kim. 2001. Identification and antifungal antagonism of Chryseomonas luteola 5042 against Phytophthora capsici. Kor. J. Appl. Microbial. Biotechnol. 29: 186-193