References
- L. V. Ahlfors and G. Weill, A uniqueness theorem for Beltrami equations, Proc. Amer. Math. Soc. 13 (1962), 975-978 https://doi.org/10.2307/2034099
- L. A. Aksent'ev, Sufficient conditions for univalence of regular functions (Russian), Izv. Vyss. Ucebn. Zaved. Matematika 1958 (1958) no. 3 (4), 3-7
- L. A. Aksent'ev and F. G. Avhadiev, A certain class of univalent functions (Russian), Izv. Vyss. Ucebn. Zaved. Matematika 1970 (1970) no. 10, 12-20
- F. G. Avhadiev, Conditions for the univalence of analytic functions (Russian), Izv. Vyss. Ucebn. Zaved. Matematika 1970 (1970) no. 11 (102), 3-13
- F. G. Avhadiev and L. A. Aksent'ev, Sufficient conditions for the univalence of analytic functions (Russian), Dokl. Akad. Nauk SSSR 198 (1971), 743-746, English translation in Soviet Math. Dokl. 12 (1971), 859-863
- F. G. Avhadiev Fundamental results on sufficient conditions for the univalence of analytic functions (Russian), Uspehi Mat. Nauk 30 (1975), no. 4(184), 3-60, English translation in Russian Math. Surveys 30 (1975), 1-64
- J. Becker, Lownersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math. 255 (1972), 23-43
- J. Becker, Lownersche Differentialgleichung und Schlichtheitskriterien, Math. Ann. 202 (1973), 321-335 https://doi.org/10.1007/BF01433462
- J. Becker and Ch. Pommerenke, Schlichtheitskriterien und Jordangebiete, J. Reine Angew. Math. 354 (1984), 74-94
- P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 259. Springer-Verlag, New York, 1983
- G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Translations of Mathematical Monographs, Vol. 26 American Mathematical Society, Providence, R.I. 1969
- Y. C. Kim, S. Ponnusamy, and T. Sugawa, Mapping properties of nonlinear integral operators and pre-Schwarzian derivatives, J. Math. Anal. Appl. 299 (2004), no. 2, 433-447 https://doi.org/10.1016/j.jmaa.2004.03.081
- Y. C. Kim and T. Sugawa, Growth and coefficient estimates for uniformly locally univalent functions on the unit disk, Rocky Mountain J. Math. 32 (2002), no. 1, 179-200 https://doi.org/10.1216/rmjm/1030539616
- Y. C. Kim, A conformal invariant for nonvanishing analytic functions and its applications, Michigan Math. J. 54 (2006), no. 2, 393-410 https://doi.org/10.1307/mmj/1156345602
- Y. C. Kim, Norm estimates of the pre-Schwarzian derivatives for certain classes of univalent functions, Proc. Edinb. Math. Soc. (2) 49 (2006), no. 1, 131-143 https://doi.org/10.1017/S0013091504000306
- S. L. Krushkal, Quasiconformal extensions and reflections, Handbook of Complex Analysis: Geometric Function Theory. Vol. 2, 507-553, Elsevier, Amsterdam, 2005
- J. G. Krzyz, Convolution and quasiconformal extension, Comment. Math. Helv. 51 (1976), no. 1, 99-104 https://doi.org/10.1007/BF02568145
- Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551 https://doi.org/10.1090/S0002-9904-1949-09241-8
- T. Sugawa, The universal Teichm¨uller space and related topics, Proceedings of the International Workshop on Quasiconformal Mappings and their Applications (India) (S. Ponnusamy, T. Sugawa, and M. Vuorinen, eds.), Narosa Publishing House, 2007, pp. 261-289
- S. Yamashita, Norm estimates for function starlike or convex of order alpha, Hokkaido Math. J. 28 (1999), no. 1, 217-230 https://doi.org/10.14492/hokmj/1351001086
Cited by
- Univalence criteria for meromorphic functions and quasiconformal extensions vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-112