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NORM ESTIMATES AND UNIVALENCE CRITERIA FOR
MEROMORPHIC FUNCTIONS

Saminathan Ponnusamy and Toshiyuki Sugawa

Abstract. Norm estimates of the pre-Schwarzian derivatives are given
for meromorphic functions in the outside of the unit circle. We de-
duce several univalence criteria for meromorphic functions from those

estimates.

1. Introduction

Let A denote the set of analytic functions f in the unit disk D = {z ∈ C :
|z| < 1} normalized so that f(0) = 0 and f ′(0) = 1. The set S of univalent
functions in A has been intensively studied by many authors. It is well rec-
ognized that the set Σ of univalent meromorphic functions F in the domain
∆ = {ζ : |ζ| > 1} of the form

(1.1) F (ζ) = ζ +
∞∑

n=0

bnζ−n

plays an indispensable role in the study of S .
In parallel with the analytic case, we consider the set M of meromorphic

functions in ∆ with the expansion (1.1) around ζ = ∞. For some technical
reason, we also consider the set Mn of functions F in Σ of the form

F (ζ) = ζ +
bn

ζn
+

bn+1

ζn+1
+ · · ·

for each nonnegative integer n. Note that M0 = M .
Practically, it is an important problem to determine univalence of a given

function in A or in M . The best known conditions for univalence are probably
those involving pre-Schwarzian or Schwarzian derivatives, which are defined by

Tf =
f ′′

f ′ and Sf =
(

f ′′

f ′

)′

− 1
2

(
f ′′

f ′

)2

.
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We define quantities for functions f ∈ A and F ∈ M by

B(f) = sup
|z|<1

(1 − |z|2) |zTf (z)| ,

B∗(F ) = sup
|ζ|>1

(|ζ|2 − 1) |ζTF (ζ)| ,

N(f) = sup
|z|<1

(1 − |z|2)2 |Sf (z)| ,

N∗(F ) = sup
|ζ|>1

(|ζ|2 − 1)2 |SF (ζ)| .

Note that these quantities may take ∞ as their values. For example, if F
has a pole at a finite point, then B∗(F ) = ∞. Those functions with finite
norms constitute complex Banach spaces, which play a fundamental role in the
universal Teichmüller space. See [19] for a survey on the universal Teichmüller
space.

If f ∈ A and F ∈ M have the relation f(z) = 1/F (1/z), then we can easily
see that the relation

(1 − |z|2)2Sf (z) = (|ζ|2 − 1)2SF (ζ)

holds for z = 1/ζ. In particular, we have N(f) = N∗(F ).
Nehari [18] proved the following univalence criteria except for the quasicon-

formal extension property, which is due to Ahlfors and Weill [1].

Theorem A. Every f ∈ S satisfies N(f) ≤ 6. Conversely, if f ∈ A satisfies
N(f) ≤ 2, then f must be univalent. Moreover, if N(f) ≤ 2k < 2, then f
extends to a k-quasiconformal mapping of the extended plane. The constants 6
and 2 are best possible. The same is true for meromorphic F.

Here and hereafter, a quasiconformal mapping g is called k-quasiconformal
if its Beltrami coefficient µ = gz̄/gz satisfies ∥µ∥∞ ≤ k. An extensive survey on
those univalent functions in S or Σ which extend to quasiconformal mappings
of the Riemann sphere was recently supplied by Krushkal [16].

Though zf ′(z)/f(z) = ζF ′(ζ)/F (ζ), there is no such a simple relation be-
tween zTf (z) and ζTF (ζ), and thus, between B(f) and B∗(F ) for f(z) =
1/F (ζ), ζ = 1/z. Indeed, we have the formula

(1.2) F ′(ζ) =
(

z

f(z)

)2

f ′(z),

which leads to

−ζF ′′(ζ)
F ′(ζ)

= 2
(

1 − zf ′(z)
f(z)

)
+

zf ′′(z)
f ′(z)

.

Nevertheless, it is rather surprising that formally the same conclusion can be
deduced for f and F. Compare Theorem B with Theorem C.
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Theorem B. Every f ∈ S satisfies B(f) ≤ 6. Conversely, if f ∈ A satisfies
B(f) ≤ 1, then f ∈ S . Moreover, if B(f) ≤ k < 1, then f extends to a k-
quasiconformal mapping of the extended plane. The constants 6 and 1 are best
possible.

The sufficiency of univalence and quasiconformal extendibility is due to
Becker [7]. The sharpness of the constant 1 is due to Becker and Pommerenke
[9]. The sharp inequality B(f) ≤ 6 follows from a standard inequality appearing
in coefficient estimation (see, e.g., [10, Theorem 2.4]).

Theorem C. Every F ∈ Σ satisfies B∗(F ) ≤ 6. Conversely, if F ∈ M satisfies
B∗(F ) ≤ 1, then F ∈ Σ. Moreover, if B∗(F ) ≤ k < 1, then F extends to a k-
quasiconformal mapping of the extended plane. The constants 6 and 1 are best
possible.

The sufficiency of univalence and quasiconformal extendibility is due to
Becker [8]. The sharpness of the constant 1 is again due to Becker and Pom-
merenke [9]. On the other hand, the estimate B∗(F ) ≤ 6 lies deeper. Avhadiev
[4] first showed the sharp inequality B∗(F ) ≤ 6 by appealing to Goluzin’s in-
equality (see [11, p. 139]).

Note that many authors use a different norm for the pre-Schwarzian deriv-
ative of f ∈ A , namely, ∥Tf∥ = sup|z|<1(1 − |z|2)|Tf (z)|, see [12], [13], [15]
and [20]. By definition, we observe B(f) ≤ ∥Tf∥. The norm ∥Tf∥ has some
advantage such as invariance properties. For meromorphic functions, however,
the corresponding norm is not suitable (see [19, §4.2]).

Recall that a plane domain Ω ⊂ C is called hyperbolic if ∂Ω contains at least
two points. The uniformization theorem ensures existence of the (complete)
hyperbolic metric ρΩ(w)|dw| on Ω with constant Gaussian curvature −4. Let
Ω be a hyperbolic plane domain such that 1 ∈ Ω but 0 /∈ Ω and set

Π(Ω) = {F ∈ M : F ′(ζ) ∈ Ω for all ζ ∈ ∆}.

Set also Πn(Ω) = Π(Ω) ∩ Mn for n = 0, 1, 2, . . . .
In [14], the quantity

W (Ω) = sup
w∈Ω

1
|w|ρΩ(w)

is studied and called the circular width of Ω. Note that the circular width can
also be expressed by W (Ω) = supz∈D(1 − |z|2)|p′(z)/p(z)|, where p : D → Ω is
any analytic universal covering projection of D onto Ω (We do not demand the
condition p(0) = 1). For concrete values of circular widths of specific domains,
see [14].

One of our main results in the present paper is an estimate of B∗(F ) for
F ∈ Πn(Ω). The proof of the following theorem will be given in Section 2.



1664 SAMINATHAN PONNUSAMY AND TOSHIYUKI SUGAWA

Theorem 1. Let Ω be a hyperbolic domain such that 1 ∈ Ω but 0 /∈ Ω. For
every F ∈ Πn(Ω), n ≥ 0, the inequality

B∗(F ) ≤ CnW (Ω)

holds, where Cn are the constants given by C0 = 2 and

(1.3) Cn = sup
0<r<1

(n + 1)(1 − r2)rn−1

1 − r2n+2
, n ≥ 1.

As we shall show later (see Proposition 5), we have C1 = 2 and 1 < Cn <
(n + 1)/n for n ≥ 2. We note that an analytic counterpart of this theorem is
known and it is much simpler to prove (see [13, Theorem 4.1]);

B(f) ≤ ∥Tf∥ ≤ W (Ω)

holds for f ∈ A with f ′(D) ⊂ Ω.
The univalence criterion in the following is due to Aksent’ev [2] (see also [6,

p. 11]). Later, Krzyż [17] gave quasiconformal extensions.

Theorem D (Aksent’ev, Krzyż). Let 0 ≤ k ≤ 1. If F ∈ M satisfies the
inequality

(1.4) |F ′(ζ) − 1| ≤ k, |ζ| > 1,

then F is univalent. Furthermore, if k < 1, then F extends to a k-quasiconfor-
mal mapping of the extended plane. The radii 1 and k are best possible.

The above criterion implies univalence of F ∈ M when the range of F ′ is
contained in the disk |w − 1| < 1. We remind the reader of the fact that the
Noshiro-Warschawski theorem asserts that the condition Re f ′ > 0 is sufficient
for f ∈ A to be univalent (cf. [10, Theorem 2.16]). However, the meromorphic
counterpart does not hold. Moreover, the range of F ′ cannot be enlarged to
any disk of the form |w − r| < r, r > 1, to ensure univalence of F (Aksent’ev
and Avhadiev [3], see also §4).

Applying Theorem 1 to specific domains Ω, we have several results similar to
Theorem D. The following are a couple of examples. Note that the univalence
criteria in Theorems 2 and 3 for the case n = 0 were first given by Avhadiev
and Aksent’ev [5].

Let xm be the unique solution to the equation

2F1(1,− 1
m ; 1 − 1

m ;x) =
1
2

in the interval 0 < x < 1 for each integer m ≥ 2 (see Section 4 for details). Put
also x1 = x2.

Theorem 2. Let n ≥ 0 and 0 ≤ k ≤ 1. Suppose that a function F ∈ Mn

satisfies the condition

| arg F ′(ζ)| ≤ kπ

4Cn
, |ζ| > 1,
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then F must be univalent. Furthermore, if k < 1, then F extends to a k-
quasiconformal mapping of the extended plane. As for univalence, the constant
π/(4Cn) cannot be replaced by any larger number than (4/π) arctan xn+1.

Note that x1 = x2 ≈ 0.4198 and that

(4/π) arctan x1 ≈ 0.506057 ≈ 1.28866(π/8).

In the following univalence criterion, F ′ is even allowed to take values with
negative real part. Let βm be the unique solution to the equation

(1.5) 2β

∫ π/4

0

(cot x)1/me2β(x−π/4)dx = 1

in 0 < β < ∞ for each integer m ≥ 2 (see Example 11 in Section 4). Set
β1 = β2.

Theorem 3. Let n ≥ 0 and 0 ≤ k ≤ 1. Suppose that a function F ∈ Mn

satisfies the condition

| log |F ′(ζ)|| ≤ kπ

4Cn
, |ζ| > 1,

then F must be univalent. Furthermore, if k < 1, then F extends to a k-
quasiconformal mapping of the extended plane. As for univalence, the constant
π/(4Cn) cannot be replaced by any larger number than πβn+1/2.

A numerical computation gives πβ1/2 ≈ 0.719122 ≈ 1.83123(π/8). These
results can also be translated into those for the functions f ∈ A by using
the relation (1.2). The proofs of the above theorems and slightly more refined
results will be presented in Section 5.

2. Proof of Theorem 1

Let Ω be a plane domain with 1 ∈ Ω and 0,∞ ∈ Ĉ\Ω and let p be an analytic
universal covering map of D onto Ω with p(0) = 1. Let F ∈ Πn(Ω) be given.
When n = 0, the function F can be expressed in the form F = F0 + b0, where
F0 ∈ M1 and b0 is a constant and hence F0 ∈ Π1(Ω). Recall that C0 = C1 = 2.
Therefore, we may further assume that n ≥ 1.

Let ω : D → D, ω(0) = 0, be the lift of the mapping z 7→ F ′(1/z) of D into
Ω via the covering map p : D → Ω, namely,

(2.1) F ′
(1

z

)
= p(ω(z)), |z| < 1.

Since F ∈ Mn, it can be expressed in the form

F (ζ) = ζ +
∞∑

k=n

bkζ−k, |ζ| > 1,



1666 SAMINATHAN PONNUSAMY AND TOSHIYUKI SUGAWA

we have

F ′(1/z) = 1 −
∞∑

k=n

kbkzk+1 = 1 −
∞∑

k=n+1

(k − 1)bk−1z
k, |z| < 1.

In particular, ω has a zero of at least order n + 1 at the origin. This implies
that the function φ(z) = ω(z)/zn+1 is analytic and satisfies |φ(z)| ≤ 1 by the
maximum modulus principle. We now apply the Schwarz-Pick lemma to the
function φ to get

|φ′(z)| ≤ 1 − |φ(z)|2

1 − |z|2
, |z| < 1,

and equivalently,

(2.2) |zω′(z) − (n + 2)ω(z)| ≤ |z|2n+2 − |ω(z)|2

|z|n(1 − |z|2)
, |z| < 1.

In particular, we obtain

(2.3) |zω′(z)| ≤ (n + 2)|ω(z)| + |z|2n+2 − |ω(z)|2

|z|n(1 − |z|2)
, |z| < 1.

The last inequality can be expressed by

(2.4) (1 − |z|2)|z|−1|ω′(z)| ≤ (1 − |ω(z)|2)F (|z|, |ω(z)|), |z| < 1,

where the function F (r, s) is defined by

F (r, s) =
(n + 1)(1 − r2)rns + r2n+2 − s2

rn+2(1 − s2)
.

Since |φ(z)| ≤ 1, we see that |ω(z)| ≤ |z|n+1 holds. We now show the
following elementary result.

Lemma 4.

F (r, s) ≤ F (r, rn+1) =
(n + 1)(1 − r2)rn−1

1 − r2n+2
, 0 ≤ s ≤ rn+1.

Proof. We first see the inequality

∂F

∂s
(r, s) =

1 + s2

rn+2(1 − s2)2

[
(n + 1)rn(1 − r2) − 2(1 − r2n+2)

s

1 + s2

]
≥ 1 + s2

rn+2(1 − s2)2

[
(n + 1)rn(1 − r2) − 2(1 − r2n+2)

rn+1

1 + r2n+2

]
=

(1 + s2)
r2(1 − s2)2(1 + r2n+2)

G(r), 0 ≤ s ≤ rn+1,
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because the function s/(1 + s2) is increasing in 0 < s < 1 and s ≤ rn+1 is
assumed. Here,

G(r) = (n + 1)(1 − r2)(1 + r2n+2) − 2r(1 − r2n+2)

= (1 − r2)

(n + 1)(1 + r2n+2) − 2r

n∑
j=0

r2j


= (1 − r2)

(n + 1)(1 + r2n+2) − r

n∑
j=0

(r2j + r2n−2j)


= (1 − r2)

n∑
j=0

[
(1 + r2n+2) − r(r2j + r2n−2j)

]
= (1 − r2)

n∑
j=0

(1 − r2j+1)(1 − r2n+1−2j) > 0.

Therefore, we conclude that (∂F/∂s)(r, s) > 0 in 0 < s < rn+1, which implies
the monotonicity of the function F (r, s) in s. Thus the inequality F (r, s) ≤
F (r, rn+1) holds in 0 ≤ s ≤ rn+1. ¤

We now complete the proof of Theorem 1. By taking the logarithmic deriv-
ative of the both sides of (2.1), we have the relation

−F ′′(1/z)
z2F ′(1/z)

=
p′(ω(z))
p(ω(z))

ω′(z), |z| < 1.

Letting ζ = 1/z, we thus obtain

(|ζ|2 − 1)
∣∣∣∣ζF ′′(ζ)

F ′(ζ)

∣∣∣∣ = (1 − |z|2)|z|−1

∣∣∣∣p′(ω(z))
p(ω(z))

∣∣∣∣ |ω′(z)|.

Recall here that Cn is nothing but the supremum of F (r, rn+1) over 0 < r < 1.
We then make use of (2.4) and Lemma 4 to deduce the inequality

(|ζ|2 − 1)
∣∣∣∣ζF ′′(ζ)

F ′(ζ)

∣∣∣∣ ≤ (1 − |ω(z)|2)
∣∣∣∣p′(ω(z))
p(ω(z))

∣∣∣∣ F (|z|, |z|n+1)

≤ Cn(1 − |ω(z)|2)
∣∣∣∣p′(ω(z))
p(ω(z))

∣∣∣∣
≤ CnW (Ω).

The assertion of the theorem now follows.

Remark. The theorem is sharp if the relation ρ0 = rn+1
0 is satisfied by chance,

where r = r0 is the point where the maximum is attained in the definition of Cn

and r = ρ0 is the radius where the maximum is attained for (1−|z|2)|p′(z)/p(z)|.
Let w0 be the maximum point of (1 − |z|2)|p′(z)/p(z)| with |w0| = ρ0, and set
z0 = r0. Then we choose ω0 so that ω0(z0) = w0 and equalities hold in (2.2)
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and (2.3) at z = z0 simultaneously (see the proof of Dieudonné’s lemma in [10,
p. 198]). Then, we actually have B∗(F ) = CnW (Ω) in this case, where F is
determined by F ′(1/z) = p(ω0(z)) in |z| < 1.

As we mentioned in Section 1, we give some information about the constants
Cn.

Proposition 5. The constants Cn given by (1.3) satisfy the following:

C0 = C1 = 2, C2 =
3
√

6(
√

13 − 1)

5 +
√

13
≈ 1.37838,(2.5)

1 < Cn <
n + 1

n
, n = 2, 3, . . . .(2.6)

Proof. The relations in (2.5) can be checked in a straightforward way. We omit
the details. We show only (2.6). Let n ≥ 2 and set

gn(x) =
1 − xn+1

x(n−1)/2(1 − x)
, x ∈ (0, 1).

Then clearly, Cn = (n + 1)/ inf0<x<1 gn(x). First note that

lim
x→1

gn(x) = n + 1.

Therefore, we have Cn ≥ 1. In order to show strictness, we set x = 1−ε, ε > 0.
Then

gn(1 − ε) = (n + 1) − n + 1
2

ε + O(ε2), ε → 0,

which implies that gn(x) is smaller than n + 1 when x < 1 is close enough to
1. Therefore, Cn > 1.

We next show the reverse inequality. Since gn(x) → +∞ as x → 0+, the
function gn takes its minimum at a point in (0, 1). We now estimate gn(x) from
below;

gn(x) = x(1−n)/2
n∑

j=0

xj

> x(1−n)/2
n−1∑
j=0

xj

= x(1−n)/2
n−1∑
j=0

xj + xn−1−j

2

=
n−1∑
j=0

xj−(n−1)/2 + x(n−1)/2−j

2

≥
n−1∑
j=0

1 = n.
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Thus we get the inequality min0<x≤1 gn(x) > n, which in turn implies Cn <
(n + 1)/n. ¤

3. A variant of Theorem 1

We give a variant of Theorem 1 in the present section. In the following
theorem, the condition p(0) = 1 for the analytic universal covering map p of
D onto Ω is required and the constant involved might not be computed easily,
but the estimate is independent of n and better than Theorem 1 at least when
n = 0.

Theorem 6. Let Ω be a plane domain with 1 ∈ Ω but 0,∞ /∈ Ω and let p be
an analytic universal covering map of the unit disk D onto Ω with p(0) = 1.
Then, for every F ∈ Π(Ω) the inequality

B∗(F ) ≤ 2 sup
|z|<1

(1 − |z|)
∣∣∣∣p′(z)
p(z)

∣∣∣∣
holds.

Proof. The proof proceeds basically in the same line as in the previous section.
In order to show that the constant is really independent of n for which F ∈
Πn(Ω) holds, we prove the assertion under the additional assumption that
F ∈ Πn(Ω) for a fixed n ≥ 1. We replace the inequality (2.4) by

(3.1) (1 − |z|2)|z|−1|ω′(z)| ≤ (1 − |ω(z)|)H(|z|, |ω(z)|), |z| < 1,

where

H(r, s) =
(n + 1)(1 − r2)rns + r2n+2 − s2

rn+2(1 − s)
.

Recall here that |ω(z)| ≤ |z|n+1 holds. Since the function s2 − 2s is decreasing
in 0 < s < rn+1, we have

∂H

∂s
(r, s) =

s2 − 2s + (n + 1)(1 − r2)rn + r2n+2

rn+2(1 − s)2

≥ r2n+2 − 2rn+1 + (n + 1)(1 − r2)rn + r2n+2

rn+2(1 − s)2
.

The numerator of the last term can be written in the form

rn
[
(n + 1)(1 − r2) − 2r(1 − rn+1)

]
= rn(1 − r)

[
(n + 1)(1 + r) − 2r(1 + r + r2 + · · · + rn)

]
= rn(1 − r)

n∑
j=0

(
1 + r − 2rj+1

)
.

It is now clear that (∂H/∂s)(r, s) > 0 in 0 < s ≤ rn+1. Thus H(r, s) is
increasing in s and therefore

H(r, s) ≤ H(r, rn+1) =
(n + 1)(1 − r2)rn−1

1 − rn+1
= g(r).
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Since

g′(r) =
(n + 1)rn−2

(
(n − 1)(1 − r2) − 2r2(1 − rn−1)

)
(1 − rn+1)2

=
(n + 1)rn−2(1 − r)

(1 − rn+1)2

n−2∑
j=0

[
1 − rj+2 + r(1 − rj+1)

]
> 0,

the function g(r) is increasing and thus g(r) < g(1−) = 2 for 0 ≤ r < 1.
Therefore, we obtain

sup
0<s≤rn+1<1

H(r, s) = sup
0<r<1

g(r) = 2,

which is, indeed, independent of n.
The rest is same as in the previous section. We omit the details. ¤
Since 1 − r ≤ 1 − r2 = (1 + r)(1 − r) ≤ 2(1 − r), the inequalities

sup
|z|<1

(1 − |z|)
∣∣∣∣p′(z)
p(z)

∣∣∣∣ ≤ W (Ω) = sup
|z|<1

(1 − |z|2)
∣∣∣∣p′(z)
p(z)

∣∣∣∣ ≤ 2 sup
|z|<1

(1 − |z|)
∣∣∣∣p′(z)
p(z)

∣∣∣∣
hold. Thus, when n = 0, the estimate in Theorem 6 is better than that in
Theorem 1.

4. Examples of non-univalent functions

In this section, we present non-univalent meromorphic functions in the class
M to examine our univalence criteria given in introduction. First, we introduce
the example given by Aksent’ev and Avhadiev [3].

Example 7. Let r > 1 be given and set Ω = {w ∈ C : |w − r| < r}. For
a number c ∈ (0, 1/2], we set Φ = G ◦ F, where F (ζ) = ζ + c/ζ and G(ζ) =
ζ + (1 + c)2/ζ. Then

Φ′(ζ) = 1 − ζ−2 + cψ(ζ−2),
where

ψ(z) = ψc(z) = − (c + 3) − (c2 + 3)z + (c2 − c)z2

(1 + cz)2
.

Note that the functions 1 − ζ−2 and ψ(ζ−2) take the value 0 at ζ = ±1. Since
ψc is uniformly bounded in D and ψ′(1) > 0, in order to see that F ′(D) ⊂ Ω for
sufficiently small c, it is enough to check that the (signed) curvature of the curve
θ 7→ ψ(eiθ) is positive at θ = 0, in other words, Re (1 + zψ′′(z)/ψ′(z))/|ψ′(z)|
is positive at z = 1. A direct computation gives

1 +
zψ′′(z)
ψ′(z)

=
3 − 10c + 2(c2 + c)z − c2z2

(3 − cz)(1 + cz)
,

which shows Re (1 + ψ′′(1)/ψ′(1))/|ψ′(1)| > 0 for a small enough c > 0 as
required.

We see now that Φ is not univalent in ∆ by observing that the two points
±i(1 + c +

√
1 + 6c + c2)/2 in ∆ are zeros of Φ.
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The above example is qualitatively very nice but somewhat implicit because
it is not simple to give a right value of c for a given r > 1. The next two
examples are more concrete.

Example 8. We consider the function Fm ∈ M given by

Fm(ζ) = ζ − 2
∞∑

j=1

ζ1−mj

mj − 1

= ζ
(
22F1(1,− 1

m ; 1 − 1
m ; ζ−m) − 1

)
, |ζ| > 1,

for each integer m ≥ 2, where 2F1(a, b; c; x) stands for the hypergeometric
function. Note that Fm has the m-fold symmetry

Fm(e2πi/mζ) = e2πi/mFm(ζ)

and belongs to the class Mm−1. Since the function hm defined by

hm(x) = 22F1(1,− 1
m ; 1 − 1

m ; x) − 1 (x ∈ (0, 1))

has the properties that hm is monotone decreasing, hm(0) = 1 and lim
x→1−

hm(x)

= −∞, there is the unique point xm such that h(xm) = 0 in the interval 0 < x <

1. Hence, the function Fm has the m zeros e2πij/mx
−1/m
m , j = 0, 1, . . . ,m − 1,

in ∆ and, in particular, is not univalent in ∆. On the other hand, we have

F ′
m(ζ) = 1 + 2

∞∑
j=1

ζ−mj = p(ζ−m),

where p(z) = (1 + z)/(1 − z). It is a standard fact that p maps the unit disk
onto the right half-plane H = {w ∈ C : Re w > 0}. Therefore, F ′

m maps ∆ onto
H in an m-to-1 way and ReF ′

m > 0 holds.

In particular, we have shown the following.

Proposition 9. For each integer n ≥ 0, there is a non-univalent function F
in the class Mn such that Re F ′(ζ) > 0 in |ζ| > 1.

Note that the function F2 in the above example can be expressed also by

F2(ζ) = ζ − log
ζ + 1
ζ − 1

, |ζ| > 1.

A numerical computation yields, for instance,

x2 ≈ 0.419798,

x3 ≈ 0.667508,

x4 ≈ 0.808289.

The above functions can be used to examine univalence criteria. Note that,
for a function F ∈ M , the new function

F t(ζ) = tF
(ζ

t

)
, |ζ| > 1,
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for t ∈ (0, 1) satisfies the relation (F t)′(ζ) = F ′(ζ/t). For instance, for m ≥ 2,
the function F t

m(ζ) = tFm(ζ/t) is not univalent as far as tm > xm, because
(ζ/t)−m = xm has m roots in |ζ| > 1 in this case. On the other hand, (F t

m)′

has the range {w ∈ C : w = (1 + tmz)/(1 − tmz) for some z ∈ D} = {w ∈ C :
|w − (1 + t2m)/(1 − t2m)| < 2tm/(1 − t2m)}. In this way, we have shown the
following.

Proposition 10. Let Ωs = {w ∈ C : |w− (1+ s2)/(1− s2)| < 2s/(1− s2)} and
n ≥ 1. If s > xn+1, then the class Πn(Ωs) contains non-univalent functions.

Example 11. The construction is similar to that of Example 8. First note that
the analytic function ((1 + z)/(1 − z))iβ gives a universal covering projection
of the unit disk onto the annulus A = {w ∈ C : e−πβ/2 < |w| < eπβ/2} for a
positive constant β. Let G ∈ Mm−1 be the function determined by the relation
G′(ζ) = ((ζm +1)/(ζm−1))iβ for an integer m ≥ 2. Then G also has the m-fold
symmetry. Let hβ(z) = 1/z −

∫ z

0
tm−2qβ(tm)dt, where ((1 + z)/(1 − z))iβ =

1 + zqβ(z), so that G(ζ) = hβ(1/ζ). Now take any root ω of the polynomial
zm + i and set φ(β) = ωhβ(ω). Since 1 + ixqβ(ix) = ((1 + ix)/(1 − ix))iβ =
exp(2iβarctanh(ix)) = exp(−2β arctanx), we have for 0 < r ≤ 1

ωhβ(ωr) =
1
r

+
∫ r

0

itn−2qβ(−itm)dt

=
1
r
−

∫ r

0

(exp(2β arctan(tm)) − 1) t−2dt.

Thus,

φ(β) = 1 −
∫ 1

0

(exp(2β arctan(tm)) − 1) t−2dt.

Since φ(0) = 1, φ(+∞) = −∞ and

φ′(β) = −
∫ 1

0

t−2 arctan(tm) exp(2β arctan(tm))dt < 0,

there exists a unique βm such that φ(βm) = 0. We now simplify the equation
φ(β) = 0. Performing integration by parts and then setting x = arctan(tm), we
have

φ(β) = eπβ/2 − 2β

∫ π/4

0

e2βx(tanx)−1/mdx

= eπβ/2

(
1 − 2β

∫ π/4

0

e2β(x−π/4)(cotx)1/mdx

)
.

Thus we have arrived at the form in (1.5).
We now fix any β > βm. Then ωhβ(ωr) > 0 for a small enough r > 0

whereas φ(β) = ωhβ(ω) < 0. Therefore, there exists an ρ ∈ (0, 1) such that
G(1/(ωρ)) = hβ(ωρ) = 0. In particular, G has at least m zeros in ∆ and thus
is not univalent. By the above observations, we have the following proposition.
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Proposition 12. Let n be an integer with n ≥ 1 and let β > βn+1. Then there
exists a non-univalent function G ∈ Mn such that e−πβ/2 < |G′(ζ)| < eπβ/2

for |ζ| > 1.

By a numerical computation, one has

β2 ≈ 0.457807,

β3 ≈ 0.786518,

β4 ≈ 1.03144.

5. Applications to univalence criteria

We combine Theorem 1 or Theorem 6 with Theorem C to deduce several
univalence criteria for functions in M . The same method can be applied also to
Mn for n ≥ 1, but we do not go into details here. In order to make statements
concise, we introduce the notation Σ(k) to designate the set of those functions
in Σ which can be extended to k-quasiconformal mappings of the extended
plane. For k = 1, simply we define Σ(1) = Σ for convenience.

To examine Theorems 1 and 6, we assume Ω to be a disk containing 1 but
not containing 0. Then we can express Ω as D(a, ρ) = {w : |w − a| < ρ}, where
0 < ρ ≤ |a| and |1 − a| < ρ. If we put p(z) = a + ρz, then we compute

W (D(a, ρ)) = sup
z∈D

(1 − |z|2) ρ

|a + ρz|

= sup
0<r<1

(1 − r2)
ρ

|a| − ρr

=
ρ

|a|
sup

0<r<1

1 − r2

1 − (ρ/|a|)r

=
2ρ/|a|

1 +
√

1 − (ρ/|a|)2
,

where we have made a standard but tedious computation at the final step (see,
for instance, [15, Lemma 4.2]). Therefore, by Theorem 1, we conclude that

(5.1) B∗(F ) ≤ 2Cnρ/|a|
1 +

√
1 − (ρ/|a|)2

for F ∈ Πn(D(a, ρ)). It is easy to see that the right-hand side of the last
inequality is less than or equal to k if and only if ρ/|a| ≤ 4Cnk/(4C2

n + k2).
Thus we can show the following by appealing to Theorem C.

Theorem 13. Let n be an integer with n ≥ 0 and a ∈ C, ρ > 0 satisfy ρ ≤ |a|
and |a − 1| < ρ. Suppose that

ρ

|a|
≤ 4Cnk

4C2
n + k2

for a constant k with 0 ≤ k ≤ 1. Then Πn(D(a, ρ)) ⊂ Σ(k).
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We recall that Theorem D gives the stronger assertion Π(D(1, k)) ⊂ Σ(k)
when a = 1 and ρ = k.

We next consider to apply Theorem 6. It is not simple to treat the case
when a is not real. Therefore, we further assume that a > 0 for simplicity.
Then the conformal map p of D onto D(a, ρ) with p(0) = 1 can be taken in the
form p(z) = (1+Az)/(1+Bz), where −1 < B < A ≤ 1. A simple computation
gives us the relations A = (ρ2 − a2 + a)/ρ and B = (1 − a)/ρ.

First observe the expression (see [15, Lemma 4.1])

W =sup
z∈D

(1 − |z|)
∣∣∣∣p′(z)
p(z)

∣∣∣∣ =


(A − B) sup

0<r<1

1 − r

(1 − Ar)(1 − Br)
if A + B ≤ 0,

(A − B) sup
0<r<1

1 − r

(1 + Ar)(1 + Br)
if A + B ≥ 0.

At any event, we can easily see that W = A−B. Therefore, by Theorem 6, we
obtain the estimate

(5.2) B∗(F ) ≤ 2(A − B) =
2(ρ2 − (a − 1)2)

ρ

for F ∈ Π(D(a, ρ)). In the same way as above, we have the following.

Theorem 14. Let a > 0, ρ > 0 satisfy ρ ≤ a and |a − 1| < ρ. Suppose that

ρ2 − (a − 1)2 ≤ kρ

2
for a constant k with 0 ≤ k ≤ 1. Then Π(D(a, ρ)) ⊂ Σ(k).

As an example, let us consider the disk Ωs = {w ∈ C : |w−(1+s2)/(1−s2)| <
2s/(1 − s2)}. In this case, A = s,B = −s, and therefore,

4ρ/|a|
1 +

√
1 − (ρ/|a|)2

= 4s = 2(A − B),

which means that the estimates (5.1) with n = 0 and (5.2) are identical in this
case. In particular, Theorems 13 and 14 both imply that Π(Ωs) ⊂ Σ if s ≤ 1/4.
This is, however, weaker than Theorem D because Ωs ⊂ D(1, 1) for s ≤ 1/3.
On the other hand, Proposition 10 implies that Π(Ωs) is not contained in Σ
for s > x2 ≈ 0.4198.

However, Theorems 13 and 14 may imply the inclusion Π(D(a, ρ)) ⊂ Σ for
a disk D(a, ρ) which is not contained in D(1, 1). For instance, by Theorem 14,
we see that Π(D(3/2, 4/5)) ⊂ Σ but D(3/2, 4/5) is not a subset of D(1, 1). By
the way, this is not implied by Theorem 13.

We next recall basic results for the values of W (Ω) for special domains Ω.
We set

S(α, γ) = {w ∈ C : | arg w − γ| < πα/2}
A(r1, r2) = {w ∈ C : r1 < |w| < r2},

where 0 < α ≤ 2, γ ∈ R and 0 < r1 < r2 < ∞. The domain S(α, γ) is
called a sector with opening πα and vertex at 0. The domain A = A(r1, r2) is
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called a round annulus centered at 0 with modulus m = log(r2/r1). We write
m = mod A. Then we have the following.

Lemma 15 ([14]).

W (S(α, γ)) = 2α, 0 < α ≤ 2,

W (A(r1, r2)) =
2
π

log
r2

r1
=

2
π

mod A(r1, r2), 0 < r1 < r2 < ∞.

Combining this lemma with Theorems 1 and C, we can prove the following
two results. Theorems 2 and 3 are just special cases of them up to non-univalent
examples, which were supplied in the previous section.

Theorem 16. Let 0 ≤ k ≤ 1. If Ω is a sector with opening kπ/4 and vertex at
0 such that 1 ∈ Ω, then Π(Ω) ⊂ Σ(k).

Theorem 17. Let 0 ≤ k ≤ 1. If Ω is a round annulus centered at 0 with
modulus kπ/4 such that 1 ∈ Ω, then Π(Ω) ⊂ Σ(k).
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