DOI QR코드

DOI QR Code

Photocatalysis of o-, m- and p-Xylene Using Element-Enhanced Visible-Light Driven Titanium Dioxide

  • Kim, Jong-Tae (Department of Environmental Engineering, Kyungpook National University) ;
  • Kim, Mo-Keun (GyeongSangBukdo Government Public Institute of Health and Environment) ;
  • Jo, Wan-Kuen (Department of Environmental Engineering, Kyungpook National University)
  • 발행 : 2008.11.30

초록

Enhancing with non-metallic elemental nitrogen(N) is one of several methods that have been proposed to modify the electronic properties of bulk titanium dioxide($TiO_2$), in order to make $TiO_2$ effective under visible-light irradiation. Accordingly, current study evaluated the feasibility of applying visible-light-induced $TiO_2$ enhanced with N element to cleanse aromatic compounds, focusing on xylene isomers at indoor air quality(IAQ) levels. The N-enhanced $TiO_2$ was prepared by applying two popular processes, and they were coated by applying two well-known methods. For three o-, m-, and p-xylene, the two coating methods exhibited different photocatalytic oxidation(PCO) efficiencies. Similarly, the two N-doping processes showed different PCO efficiencies. For all three stream flow rates(SFRs), the degradation efficiencies were similar between o-xylene and m,p-xylene. The degradation efficiencies of all target compounds increased as the SFR decreased. The degradation efficiencies determined via a PCO system with N-enhanced visible-light induced $TiO_2$ was somewhat lower than that with ultraviolet(UV)-light induced unmodified $TiO_2$, which was reported by previous studies. Nevertheless, it is noteworthy that PCO efficiencies increased up to 94% for o-xylene and 97% for the m,p-xylene under lower SFR(0.5 L $min^{-1}$). Consequently, it is suggested that with appropriate SFR conditions, the visible-light-assisted photocatalytic systems could also become important tools for improving IAQ.

키워드

참고문헌

  1. Buzcu B., Fraser M. P., 2006, Source identification and apportionment of volatile organic compounds in Houston, Tx. Atmos. Environ., 40, 2385-2400 https://doi.org/10.1016/j.atmosenv.2005.12.020
  2. Neumark Y. D., Delva J., Anthony J. C., 1998, The epidemiology of adolescent inhalant drug involvement, Arch. Pediatr. Adolescent Med., 152, 781-786
  3. Revilla A. S., Pestana C. R., Pardo-Andreu G. L., Santos A. C., Uyemura S. A., Gonzales M. E., Curti C., 2007, Potential toxicity of toluene and xylene evoked by mitochondrial uncoupling, Toxicol. in Vitro, 21, 782-788 https://doi.org/10.1016/j.tiv.2007.01.012
  4. Bakand S., Winder C., Khalil C., Hayes A., 2005, A novel in vitro exposure technique for toxicity testing of selected volatile organic compounds, J. Environ. Monit., 8, 100-105 https://doi.org/10.1039/b509812b
  5. Costa C., De Pasquale R., Silvari V., Barbaro M., Catania S., 2006, In vitro evaluation of oxidative damage from organic solvent vapours on human skin, Toxicol. in Vitro., 20, 324-331 https://doi.org/10.1016/j.tiv.2005.08.007
  6. Stevens L., Lanning J. A., Anderson L. G., Jacoby W. A., Chornet N., 1998, Investigation of the photocatalytic oxidation of low-level carbonyl compounds, J. Air Waste Manage. Assoc., 48, 979-984 https://doi.org/10.1080/10473289.1998.10463748
  7. Zhao J., Yang X., 2003, Photocatalytic oxidation for indoor air purification: a literature review, Build. Environ., 38, 645-654 https://doi.org/10.1016/S0360-1323(02)00212-3
  8. Chen W., Zhang J. S., 2008, UV-PCO device for indoor VOCs removal: Investigation on multiple compounds effect, Build. Environ., 43, 246-252 https://doi.org/10.1016/j.buildenv.2006.03.024
  9. Chatterjee D., Dasgupta S., 2005, Visible light induced photocatalytic degradation of organic pollutants, J. Photoch. Photobio. C, 6, 186-205 https://doi.org/10.1016/j.jphotochemrev.2005.09.001
  10. Ihara T., Miyoshi M., Ando M., Sugihara S., Iriyama Y., 2001, Preparation of visible-light-active $TiO_2$ catalyst by RF plasma treatment, J. Mater. Sci., 36, 4201-4207 https://doi.org/10.1023/A:1017929207882
  11. Hirano K., Suzuki E., Ishikawa A., Moroi T., Shiroishi H., Kaneko M., 2000, Sensitization of $TiO_2$ particles by dyes to achieve H2 evolution by visible light, J. Photoch. Photobio. A, 136, 157-161 https://doi.org/10.1016/S1010-6030(00)00342-7
  12. Li X. Z., Li F. B., 2001, Study of $Au/Au^{3+}-TiO_2$ photocatalysts toward visible photooxidation for water and wastewater treatment, Environ. Sci. Technol., 35, 2381-2387 https://doi.org/10.1021/es001752w
  13. Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y., 2001, Visible-light photocatalysis in nitrogenenhanced titanium oxides, Science, 293, 269-271 https://doi.org/10.1126/science.1061051
  14. Ohno T., Akiyoshi M., Umebayashi T., Asai K., Mitsui T., Matsumura M., 2004, Preparation of S-enhanced $TiO_2$ photocatalysts and their photocatalytic activities under visible light, Appl. Catal. 265, 115-121 https://doi.org/10.1016/j.apcata.2004.01.007
  15. Sakthivel S., Kisch H., 2003, Photocatalytic and photoelectrochemical properties of nitrogen-enhanced titanium dioxide, Chemphyschem, 4, 487-490 https://doi.org/10.1002/cphc.200200554
  16. Li D., Haneda H., Hishita S., Ohashi N., 2005, Visible-light-driven nitrogen-enhanced $TiO_2$ photocatalysts: effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants, Mat. Sci. Eng. B, 117, 67-75 https://doi.org/10.1016/j.mseb.2004.10.018
  17. Irokawa Y., Morikawa T., Aoki K., Kosaka S., Ohwaki T., Taga Y., 2006, Photodegradation of toluene over $TiO_2-xN_x$ under visible light irradiation, Phys. Chem. Chem. Phys., 8, 1116-1121 https://doi.org/10.1039/b517653k
  18. Bacsa R., Kiwi J., Ohno T., Albers P., Nadtochenko V., 2005, Preparation, testing and characterization of enhanced $TiO_2$ active in the peroxidation of biomolecules under visible light, J. Phys. Chem., 109, 5994-6003 https://doi.org/10.1021/jp044979c
  19. Nosaka Y., Matsushita M., Nishino J., Nosaka A. Y., 2005, Nitrogen-enhanced titanium dioxide photocatalysts for visible response prepared by using organic compounds, Sci. Technol. Adv. Mat., 6, 143-148 https://doi.org/10.1016/j.stam.2004.11.006
  20. Zxagas A. P., Androulaki E., Hiskia A, Falaras P., 1999, Preparation, fractal, surface morphology and photocatalytic properties of $TiO_2$ films, Thin Solid Films, 357, 173-178 https://doi.org/10.1016/S0040-6090(99)00561-1
  21. Nazeeruddin M. K., Kay A., Rodicio I., Humphry- Baker R., Müller E., Liska P., Vlachopoulos N., Gratzel M., 1993, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = $Cl^-$, $Br^-$, $I^-$, $CN^-$, and $SCN^-$) on nanocrystalline $TiO_2$ electrodes, J. Am. Chem. Soc., 115, 6382-6390 https://doi.org/10.1021/ja00067a063
  22. Van Gerven T., Mul G., Moulijn J., Stankiewicz A., 2007, A review of intensification of photocatalytic processes, Chem. Eng. Proc., 46, 781-789
  23. Yang R., Zhang Y., Xu Q., Mo J., 2007, A mass transfer method for measuring the reaction coefficients of a photocatalyst, Atmos. Environ., 41, 1221-1229 https://doi.org/10.1016/j.atmosenv.2006.09.043
  24. Obee T. N., Brown R. T., 1995, $TiO_2$ photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene, Environ. Sci. Technol., 29, 1223-1231 https://doi.org/10.1021/es00005a013
  25. Jo W. K., Park K. H., 2004, Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds(VOCs) for non-occupational indoor air application, Chemosphere, 57, 555-565 https://doi.org/10.1016/j.chemosphere.2004.08.018
  26. Miyauchi M., Ikezawa A., Tobimatsu H., Irie H., Hashimoto K., 2004, Zeta potential and photocatalytic activity of nitrogen enhanced $TiO_2$ thin films, Phys. Chem. Chem. Phys., 6, 865-870 https://doi.org/10.1039/b314692h